Researchers Develop Wireless Bridge Sensors Without Batteries

October 17, 2007
Researchers Develop Wireless Bridge Sensors Without Batteries
Clarkson University Assistant Professor Edward S. Sazonov and graduate students Darrell Curry and Haodong Li check data from a wireless bridge sensor on the Route 11 bridge in Potsdam, N.Y. Clarkson researchers have developed technology that uses the vibrations caused by passing traffic to power wireless bridge monitoring sensors.

Clarkson University researchers have developed technology that uses the vibrations caused by passing traffic to power wireless bridge monitoring sensors.

Wireless battery-powered sensors that monitor bridges and report changes that may lead to failure are easy to install, but it is unwieldy to provide power for the sensors.

Each bridge needs at least several sensors, many installed in hard-to-access locations. Replacing millions of batteries could become a problem, adding to the expense of maintaining the bridges. The Clarkson researchers have found a way around this problem.

"We have completely eliminated the battery from the equation," says Assistant Professor Edward S. Sazonov, who developed the technology along with Professor Pragasen Pillay. "Hermetically sealed wireless sensors powered by bridge vibration can remain on the bridge without need of maintenance for decades, providing continuous monitoring of such parameters as ice conditions, traffic flows and health status."

The two electrical and computer engineering professors, along with graduate students Darrell Curry and Haodong Li, used the New York State Route 11 bridge, a steel girder structure, which runs over the Raquette River in Potsdam, N.Y., as a case study.

Energy was harvested by locating an electromagnetic generator on a girder. The harvester responded to one of the natural vibration frequencies of the bridge. Each time a car or a truck passed over the bridge, even in a different lane from the sensor installation, the whole structure vibrated and excited the mover in the generator, producing electrical energy. Harvested electrical energy powered unique wireless sensors that increased energy output of the harvester and consumed only microwatts of power while performing useful tasks.

Sazonov and Pillay have been invited to present their work at the Transportation Research Board of the National Academies Meeting in Washington, D.C., in January. The board provides support for their research.

They are also working on using the energy harvesting technology to power the various sensors in passenger cars.

Wireless monitoring of bridges and overpasses has gained much attention in the past few years. Bridge collapses happen suddenly and unpredictably, often leading to tragic loss of human life. In 2006, the Federal Highway Administration listed 25.8 percent of the nation's 596, 842 bridges as either structurally deficient or functionally obsolete. While many of these bridges will remain in service for years, they need monitoring and rehabilitation. Currently, bridge monitoring is performed through periodic visual inspections. In the tragic example of I-35W Mississippi River bridge collapse, the bridge passed a visual inspection a year prior to failure.

Read more about this research at

Source: Clarkson University

Explore further: Bio-mimicry and space exploration

Related Stories

Bio-mimicry and space exploration

October 29, 2015

What DaVinci was talking about, though it wasn't called it at the time, was biomimicry. Biomimicry is the practice of using designs from the natural world to solve technological and engineering problems. Were he alive today, ...

Calibrating an optical attenuator with few-photon pulses

November 5, 2015

Precise measurements of optical power enable activities from fiber-optic communications to laser manufacturing and biomedical imaging—anything requiring a reliable source of light. This situation calls for light-measuring ...

Rosetta and Philae—one year since landing on a comet

November 13, 2015

One year since Philae made its historic landing on a comet, mission teams remain hopeful for renewed contact with the lander, while also looking ahead to next year's grand finale: making a controlled impact of the Rosetta ...

Recommended for you

Roboticists learn to teach robots from babies

December 1, 2015

Babies learn about the world by exploring how their bodies move in space, grabbing toys, pushing things off tables and by watching and imitating what adults are doing.

Xbox gaming technology may improve X-ray precision

December 1, 2015

With the aim of producing high-quality X-rays with minimal radiation exposure, particularly in children, researchers have developed a new approach to imaging patients. Surprisingly, the new technology isn't a high-tech, high-dollar ...

Making 3-D imaging 1,000 times better

December 1, 2015

MIT researchers have shown that by exploiting the polarization of light—the physical phenomenon behind polarized sunglasses and most 3-D movie systems—they can increase the resolution of conventional 3-D imaging devices ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.