Researchers reassess theories on formation of Earth's atmosphere

September 19, 2007

Geochemists at Rensselaer Polytechnic Institute are challenging commonly held ideas about how gases are expelled from the Earth. Their theory, which is described in the Sept. 20 issue of the journal Nature, could change the way scientists view the formation of Earth’s atmosphere and those of our distant neighbors, Mars and Venus. Their data throw into doubt the timing and mechanism of atmospheric formation on terrestrial plants.

Lead by E. Bruce Watson, Institute Professor of Science at Rensselaer, the team has found strong evidence that argon atoms are tenaciously bound in the minerals of Earth’s mantle and move through these minerals at a much slower rate than previously thought. In fact, they found that even volcanic activity is unlikely to dislodge argon atoms from their resting places within the mantle. This is in direct contrast to widely held theories on how gases moved through early Earth to form our atmosphere and oceans, according to Watson.

Scientists believe that shortly after Earth was formed, it had a glowing surface of molten rock extending down hundreds of miles. As that surface cooled, a rigid crust was produced near the surface and solidified slowly downward to complete the now-solid planet. Some scientists have suggested that Earth lost all of its initial gases, either during the molten stage or as a consequence of a massive collision, and that the catastrophically expelled gases formed our early atmosphere and oceans. Others contend that this early “degassing” was incomplete, and that primordial gases still remain sequestered at great depth to this day. Watson’s new results support this latter theory.

“For the ‘deep-sequestration’ theory to be correct, certain gases would have to avoid escape to the atmosphere in the face of mantle convection and volcanism,” Watson said. “Our data suggest that argon does indeed stay trapped in the mantle even at extremely high temperatures, making it difficult for the Earth to continuously purge itself of argon produced by radioactive decay of potassium.”

Argon and other noble gases are tracer elements for scientists because they are very stable and do not change over time, although certain isotopes accumulate through radioactive decay. Unlike more promiscuous elements such as carbon and oxygen, which are constantly bonding and reacting with other elements, reliable argon and her sister noble gases (helium, neon, krypton, and xenon) remain virtually unchanged through the ages. Its steady personality makes argon an ideal marker for understanding the dynamics of Earth’s interior.

“By measuring the behavior of argon in minerals, we can begin to retrace the formation of Earth’s atmosphere and understand how and if complete degassing has occurred,” Watson explained.

Watson’s team, which includes Rensselaer postdoctoral researcher Jay B. Thomas and research professor Daniele J. Cherniak, developed reams of data in support of their emerging belief that argon resides stably in crystals and migrates slowly. “We realized from our initial results that these ideas might cause a stir,” Watson said. “So we wanted to make sure that we had substantial data supporting our case.”

The team heated magnesium silicate minerals found in Earth’s mantle, which is the region of Earth sandwiched between the upper crust and the central core, in an argon atmosphere. They used high temperature to simulate the intense heat deep within the Earth to see whether and how fast the argon atoms moved into the minerals. Argon was taken up by the minerals in unexpectedly large quantities, but at a slow rate.

“The results show that argon could stay in the mantle even after being exposed to extreme temperatures,” Watson said. “We can no longer assume that a partly melted region of the mantle will be stripped of all argon and, by extension, other noble gases.”

But there is some argon in our atmosphere--slightly less than 1 percent. If it didn’t shoot through the rocky mantle, how did it get into the atmosphere"

“We proposed that argon’s release to the atmosphere is through the weathering of the upper crust and not the melting of the mantle,” Watson said. “The oceanic crust is constantly being weathered by ocean water and the continental crust is rich in potassium, which decays to form argon.”

And what about the primordial argon that was trapped in the Earth billions of years ago" “Some of it is probably still down there,” Watson said.

Because Mars and Venus have mantle materials similar to those found on Earth, the theory could be key for understanding their atmospheres as well.

Watson and his team have already begun to test their theories on other noble gases, and they foresee similar results. “We may need to start reassessing our basic thinking on how the atmosphere and other large-scale systems were formed,” he said.

Source: Rensselaer Polytechnic Institute

Explore further: Saturn's moon Titan

Related Stories

Saturn's moon Titan

October 5, 2015

In ancient Greek lore, the Titans were giant deities of incredible strength who ruled during the legendary Golden Age and gave birth to the Olympian gods we all know and love. Saturn's largest moon, known as Titan, is therefore ...

LADEE spacecraft finds neon in lunar atmosphere

August 17, 2015

The moon's thin atmosphere contains neon, a gas commonly used in electric signs on Earth because of its intense glow. While scientists have speculated on the presence of neon in the lunar atmosphere for decades, NASA's Lunar ...

Sun's activity controls Greenland temperatures

July 16, 2015

The sun's activity could be affecting a key ocean circulation mechanism that plays an important role in regulating Greenland's climate, according to a new study. The phenomenon could be partially responsible for cool temperatures ...

We owe it all to comets

April 28, 2009

Comets have always fascinated us. A mysterious appearance could symbolize God's displeasure or mean a sure failure in battle, at least for one side. Now Tel Aviv University justifies our fascination -- comets might have provided ...

How did early Earth protect itself against the cold?

February 7, 2014

Earth's Sun was a weakling when it was younger. Around three or four billion years ago, the star's energy was about 20 percent to 25 percent lower than what's experienced today. If that was still true today, one would expect ...

Titan's was atmosphere created by gases escaping the core

March 5, 2015

A decade ago, a tiny but mighty probe descended into the soupy atmosphere of Titan. This moon of Saturn is of great interest to astrobiologists because its chemistry and liquid cycle remind us of what the early Earth could ...

Recommended for you

Climate scientist hits out at IPCC projections

October 13, 2015

As a new chairman is appointed to the Intergovernmental Panel on climate Change (IPCC) a University of Manchester climate expert has said headline projections from the organisation about future warming are 'wildly over optimistic.'

'Bridge' fuel may escalate atmospheric greenhouse gas

October 13, 2015

While the U.S. Environmental Protection Agency (EPA) suggests there has been a decline in measurable atmospheric greenhouse gas emissions from fossil fuel use in the U.S. for the past seven years, a Cornell scientist says ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.