Groovy Project Solving Cloudy Problem

September 7, 2007
Groovy Project Solving Cloudy Problem
Mauro Pivi holds a section of beam pipe with built-in grooves. (Image courtesy of Brad Plummer)

Experiments in the PEP-II accelerator have shown that beam pipes with grooves can snare unwelcome electrons, greatly reducing the formation of electron clouds that can disturb the beam.

While electron clouds presently pose little threat to the PEP-II beam, they are a major concern for the International Linear Collider (ILC) or a future B-factory project. In high energy storage rings, synchrotron radiation liberates electrons from the beam pipe walls. A positron or proton beam will accelerate the free electrons, and these electrons can then strike the chamber walls, releasing more electrons in a cascade effect until a cloud forms. Ultimately, scientists think the grooved chambers will be a good solution for certain sections of the ILC positron damping ring.

While PEP-II continued to provide beams for the BaBar experiment this summer, the ILC Group monitored the performance of four segments of beam pipe installed in a straight section of the accelerator where there are no magnets. Two sections have smooth interior walls, like normal beam pipes. Two sections have grooves cut into the interior walls that look like metal teeth on a comb. Data show that the beam pipes with grooves had 20 to 30 times less current from electron clouds than the two smooth segments. The grooves, or teeth, act as traps.

"The geometry of the grooves is important. We ran plenty of simulations to figure out the most effective grooves, and we tested two different designs in PEP-II," said Mauro Pivi of SLAC's ILC Accelerator Design group. Robert Kirby, Lanfa Wang, Tor Raubenheimer, Morrison Munro, Gennady Stupakov, Bobby McKee and Tom Markiewicz have also contributed to the project.

The teeth are far enough apart so that radiation strikes the interior wall rather than the top of the teeth. The incoming radiation frees electrons from the beam pipe walls, but the teeth are tall enough to trap electrons, which bounce between the teeth until they run out of energy.

The next step is to test a beam pipe in sections of the accelerator with magnetic fields. Under these conditions, researchers think triangular grooves, like shark teeth, will make the best trap. "Simulations say that it will also work very well to suppress electron clouds, but it's a lot trickier to design," Pivi said.

Both grooved and smooth pipe segments were coated with titanium nitride to suppress the number of electrons generated from synchrotron radiation. The grooved pipes have 100 times less current from electron clouds than PEP-II's regular stainless steel smooth chambers.

Source: Heather Rock Woods, SLAC

Explore further: High-energy observatory launches this week

Related Stories

High-energy observatory launches this week

August 19, 2015

If everything goes according to plan, on Wednesday, Aug. 19, at 6:45 a.m. St. Louis time, NASA TV will broadcast the launch of a cargo container at the Tanegashima Space Center off the southern coast of Japan. In addition ...

Parasitic fig wasps bore with zinc hardened drill bit tips

May 28, 2014

Female insects have one goal in life: to find the best place to lay their eggs. For fig wasps, that is the developing fruit of the luscious fig plant. However, when one particular parasitic fig wasp (Apocryta westwoodi grandi) ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.