Droplets that Roll Uphill

September 24, 2007
Climbing Droplets
Droplets of a glycerol-water mixture defy gravity to climb up hill, provided the surface under them is shaken in the right way. The discovery may lead to new methods to manipulate microscopic amounts of fluids. Credit: P. Brunet, J. Eggers, and R.D. Deegan

A recent experiment conducted by physicists at University of Bristol in the United Kingdom has shown that liquid drops can defy gravity. Droplets of liquid on an inclined plate that is shaken up and down can travel uphill rather than sliding down. In fact, if the plate vibrates at the right rate, the droplets will always travel counter-intuitively up the incline.

The reason has to do with pushing and pulling. As the plate rises, it pushes the droplet upward, and as it falls, it pulls the droplet down. Inertia would have the droplet slide down as the plate moved upward. Similarly, the droplet would climb up the incline as the plate drops, resisting the rapid downward acceleration.

However, the forces that hold the droplet to the plate are stronger as the plate rises. During the time that the droplet would be moving downhill, it is stuck more firmly to the plate. Therefore, the droplet gains more ground moving up the incline as the plate falls than it loses as the plate rises. Overall, the droplets travel uphill.

If the vibration doesn't apply enough force to the droplet, it will just sit still on the inclined plate. As the force increases, the droplet will begin to slide. Increasing the forces further, the droplet sits still again. Turn up the force on the droplet a little more, and it starts to climb.

Since the droplet must withstand a fair amount of force, alternately pushing and pulling, the fluid has to be somewhat thick or viscous. Pure water droplets will break apart before the forces are strong enough to cause them to climb. On the other end, the drops move very slowly if the fluid is too thick. Nevertheless, this method for moving droplets using vibrations may prove useful in the manipulation of microscopic fluids.

Citation: P. Brunet, J. Eggers, and R.D. Deegan, Physical Review Letters, forthcoming article

Source: American Physical Society

Explore further: Chemical microdroplet computers are easier to teach than to design

Related Stories

Cracking open diamonds for messages from the deep earth

August 25, 2015

Geochemist Yaakov Weiss deals in diamonds. Not the brilliant jewelry-store kind, but the flawed, dirty-looking ones used more for industry than decoration. Gem-grade diamonds are generally pure crystallized carbon, ...

Jumping droplets help heat transfer

January 3, 2013

Many industrial plants depend on water vapor condensing on metal plates: In power plants, the resulting water is then returned to a boiler to be vaporized again; in desalination plants, it yields a supply of clean water. ...

Droplet array sheds light on drug-resistant cancer stem cells

May 9, 2012

Researchers at the Institute of Bioengineering and Nanotechnology (IBN) have developed a miniaturized biochip for investigating the effect of drugs on cancer stem cells (CSCs). Published recently in Nano Today, this new technology ...

Getting a charge out of water droplets

July 11, 2014

Last year, MIT researchers discovered that when water droplets spontaneously jump away from superhydrophobic surfaces during condensation, they can gain electric charge in the process. Now, the same team has demonstrated ...

Recommended for you

Quantum dots used to convert infrared light to visible light

December 1, 2015

(Phys.org)—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.