Amazon forest shows unexpected resiliency during drought

Sep 21, 2007
Amazon Forest Greens Up
This image shows how the Amazon forest canopy's 'greenness' differs from normal for the months of July-September 2005 (drought peak). The greenness data is derived from NASA-EOS MODerate Imaging Spectroradiometer (MODIS) sensor aboard Terra Satellite. Green indicates above normal vegetation productivity compared to the 2000-2006 average, red indicates below normal, and yellow corresponds to normal . The study area is highlighted over a true color image background from NASA-EOS MODIS sensor for South America. Credit: Kamel Didan, Terrestrial Biophysics and Remote Sensing Lab, The University of Arizona

Drought-stricken regions of the Amazon forest grew particularly vigorously during the 2005 drought, according to new research.

The counterintuitive finding contradicts a prominent global climate model that predicts the Amazon forest would begin to "brown down" after just a month of drought and eventually collapse as the drought progressed.

“Instead of ‘hunkering down’ during a drought as you might expect, the forest responded positively to drought, at least in the short term," said study author Scott R. Saleska of The University of Arizona. "It's a very interesting and surprising response."

UA co-author Kamel Didan added, "The forest showed signs of being more productive. That's the big news."

The 2005 drought reached its peak at the start of the Amazon's annual dry season, from July through September. Although the double whammy of the parched conditions might be expected to slow growth of the forest's leafy canopy, for many of the areas hit by drought, the canopy of the undisturbed forest became significantly greener -- indicating increased photosynthetic activity.

Saleska, a UA assistant professor of ecology and evolutionary biology, and his colleagues at the UA and at the University of São Paulo in Brazil used data from two NASA satellites to figure out that undisturbed Amazon forest flourished as rainfall levels plummeted.

"No one had looked at the observations that are available from satellites," said Didan, an associate research scientist in the UA's department of soil, water and environmental science. "We took the opportunity of the most recent drought, the 2005 drought, to do so."

"A big chunk of the Amazon forest, the southwest region where the drought was severest, reacted positively," said Didan, a NASA-EOS MODIS associate science team member.

The study, "Amazon Forests Green-up during 2005 drought," is online in the current issue of Science Express, the early-online version of the journal Science. The paper will be published in the October 26, 2007, issue of Science.

Saleska and Didan's co-authors are Alfredo Huete, UA professor of soil, water and environmental science and NASA-EOS MODIS science team member, and Humberto Ribeiro da Rocha of the department of atmospheric science at the University of São Paulo in Brazil. The research was funded by NASA.

The UA scientists and their Brazilian colleague already knew the Amazon forest took advantage of the annual dry season's relatively cloudless skies to soak up the sun and grow. The UA scientists and some other researchers had conducted previous research using satellite data in combination with field measurements and showed that intact Amazon forest increases photosynthesis, actually "greening up," during the dry season.

However, no one had examined how the forest responded to a drought. The severe 2005 drought and the detailed, long-term observations from two NASA satellites -- one that maps the greenness of vegetation, one that measures rainfall in the tropics -- gave the researchers what they needed to see how the Amazon forest responds to a major drought.

The researchers used the month-to-month maps of changes in vegetation status across the Amazon available from the Moderate Resolution Imaging Spectroradiometer, or MODIS, carried by the Terra satellite, launched in 1999. The team gathered observations of rainfall in the Amazon from the Tropical Rainfall Measuring Mission spacecraft, launched in 1997.

The seven-to-nine years of observations from the satellites allowed the scientists to map "normal" rainfall and greenness conditions in non-drought years. When the team compared those conditions to the same months of the 2005 drought, the researchers found that areas of Amazon's intact forests that had received below-normal rainfall in 2005 also had above-average greenness.

Global climate models predict the Amazon forest will cut back photosynthesis quickly when a drought starts. That slowdown in plant growth would create a positive feedback loop -- as the forest shuts down more and more, it removes less and less carbon dioxide from the atmosphere. The CO2 ordinarily sequestered by growing trees would remain in the atmosphere, increasing global warming and further accelerating the forest's decline and additional CO2-fueled warming.

By contrast, the UA-led team's findings suggest the opposite happens, at least in the short-term. The drought-induced flush of forest growth would dampen global warming, not accelerate it. During the 2005 drought, Amazon forest trees flourished in the sunnier-than-average weather, most likely by tapping water deep in the forest soil. To grow, trees must take up carbon dioxide, thus drawing down the levels of atmospheric CO2. That negative feedback loop would slow warming from greenhouse gases.

Evolutionarily, the forest's resilience in the face of a single drought year makes sense, Saleska said. During El Nino, which occurs about every four to eight years, the Amazon forest receives significantly less rain than average.

The limit of the forest's resiliency is unknown, Saleska said, adding, "But if you take away enough water for long enough, the trees will die."

Source: University of Arizona

Explore further: Researchers explain mystery of India's rapid move toward Eurasia 80 million years ago

Related Stories

Good luck and the Chinese reverse global forest loss

Mar 30, 2015

Analysis of 20 years of satellite data has revealed the total amount of vegetation globally has increased by almost 4 billion tonnes of carbon since 2003. This is despite ongoing large-scale deforestation ...

Drought damage leads to widespread forest death

Mar 30, 2015

The 2000-2003 drought in the American southwest triggered a widespread die-off of forests around the region. A Carnegie-led team of scientists developed a new modeling tool to explain how and where trembling ...

Amazon's carbon uptake declines as trees die faster

Mar 18, 2015

The most extensive land-based study of the Amazon to date reveals it is losing its capacity to absorb carbon from the atmosphere. From a peak of two billion tonnes of carbon dioxide each year in the 1990s, ...

Recommended for you

NASA aids response to Nepal quake

4 hours ago

NASA and its partners are gathering the best available science and information on the April 25, 2015, magnitude 7.8 earthquake in Nepal, referred to as the Gorkha earthquake, to assist in relief and humanitarian ...

Nepal quake could have been much worse: Here's why

May 01, 2015

The structural engineer strides through Kathmandu's old city, past buildings reduced to rubble, buildings whose facades are cracked in dozens of places, like the fractured shell of a hardboiled egg. But it's ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.