Device could put disease detection in the palm of a hand

July 3, 2007
Device could put disease detection in the palm of a hand
Berkeley associate professor Lydia Sohn (right) explains her nanocytometer to Arden Bement, director of the National Science Foundation, at a Capitol Hill exhibition.

Lydia Sohn, associate professor of mechanical engineering at UC Berkeley, took her show on the road last week with a demonstration of her handheld nanocytometer at a "science fair" for leaders of Congress and the National Science Foundation.

The Coalition for National Science Funding Exhibition, on Capitol Hill, brought together researchers from 16 universities and 40 national scientific and educational associations. Sohn's contribution was her "pore-on-a-chip" technology, developed with an NSF grant, that makes disease detection at home or in the field an affordable reality. The device is currently in the pipeline for commercial development.

The nanocytometer is a pocket-sized device that can rapidly identify diseases by testing a single drop of blood using an inexpensive disposable cartridge. The cartridges contain a silicon chip laden with artificial nanopores that mimic the filtration system of human cells.

"The nanocytometer lets us work at the intersection of a number of disciplines, from biology an mechanical engineering to solid-state physics and chemical engineering," says Sohn, who developed the device in collaboration with Andrea Carbonaro and Haiyan Huang of UC Berkeley and Lucy Godley of the University of Chicago. The tool has the potential to boost survival chances for leukemia, prostate or breast-cancer patients — particularly where the cancer has recurred — by offering early detection of rare, isolated cancer cells.

Source: UC Berkeley

Explore further: Berkeley Lab scientists to help build world's first total-body PET scanner

Related Stories

New approach for 'nanohoops' could energize future devices

October 12, 2015

When Ramesh Jasti began making tiny organic circular structures using carbon atoms, the idea was to improve carbon nanotubes being developed for use in electronics or optical devices. He quickly realized, however, that his ...

Is black phosphorous the next big thing in materials?

October 16, 2015

A new experimental revelation about black phosphorus nanoribbons should facilitate the future application of this highly promising material to electronic, optoelectronic and thermoelectric devices. A team of researchers at ...

A different type of 2-D semiconductor

September 25, 2015

To the growing list of two-dimensional semiconductors, such as graphene, boron nitride, and molybdenum disulfide, whose unique electronic properties make them potential successors to silicon in future devices, you can now ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.