Quantum computing on an everyday PC

June 27, 2007

Scientists have successfully simulated a collision of two laser beams from an atom laser using an everyday desktop computer.

Professor Peter Drummond, from the Australian Research Centre of Excellence for Quantum-Atom Optics at The University of Queensland, and Dr Piotr Deuar, from Van der Waals Zeeman Institute in Holland, have achieved this using an everyday PC rather than a supercomputer.

“Such raw calculations have commonly been assumed intractable, once the number of atoms approaches even a few dozen,” Professor Drummond said.

“This is because the complexity of the mathematical description grows rapidly with the number of atoms.”

The research recently appeared in the prestigious US journal Physical Review Letters receiving an editor's commendation as being of special interest.

“Up until now, approximations have been essential in obtaining any predictions for macroscopic quantum mechanical systems, like lasers or superconductors,” Professor Drummond said.

“We have now succeeded in simulating the collision of two beams from an atom laser, each with hundreds of thousands of particles.

“This is a major accomplishment, because one of the main arguments for the task of developing quantum computers has been that they might be able to tackle this type of problem, if built.

“The method used is to randomly sample the complexity of moving between adjacent points in time with a specially tailored "random walk", rather than following all the tiny details.

Professor Drummond said there was a catch though, with the randomness eventually swamping everything and the simulation must be stopped.

“However, the time before this happens is long enough to discover the way that large numbers of atoms interact at ultra-low temperatures,” he said.

“Since quantum computers are still in the future, the approach of using smarter computer software on existing computers seems the only way to make progress on such frontier problems in physics at the present time.”

Professor Drummond said the resulting predictions are being tested in the latest experiments underway in Paris and at The Australian National University.

Source: University of Queensland

Explore further: Nobel Prize-Winner Confirms UQ Quantum Physics Theory

Related Stories

Nobel Prize-Winner Confirms UQ Quantum Physics Theory

June 2, 2004

A novel quantum theory developed by University of Queensland, Australia researchers has been confirmed by recent experiments at a Nobel Prize-winning lab. Professor Bill Phillips’ Nobel Prize-winning group at the US National ...

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.