NIST antenna calibrations extended to 60-110 GHz

May 25, 2007

The National Institute of Standards and Technology (NIST) has developed a new "tabletop" sized facility to improve characterization of antennas operating in the 60 to 110 gigahertz (GHz) frequency range. This extended frequency capability serves needs for advanced civilian and military communication and radar systems.

Many electronic systems are moving to higher frequencies to attain higher channel capacity, better spatial resolution and other advantages. The new measurement facility will help accelerate development of technologies such as automobile collision-prevention radars, which operate at 94 GHz and require antennas small enough to be integrated into car bumpers. Improved NIST antenna calibration capability also helps to assure the accuracy of many systems. "NIST is the start of the measurement traceability chain," says Perry Wilson, leader of the Radio Frequency Fields Group. "For instance, we calibrate the probes used by aerospace companies to calibrate instruments launched on satellites and other critical systems. Weather satellites are an example; improvements in antenna accuracy mean better data for weather models, resulting in better weather predictions."

The new facility continues NIST's history of innovation in antenna measurements, building on the "extrapolated gain" technique developed several decades ago. The original extrapolation range and techniques made it practical for researchers to accurately compute an antenna's far-field characteristics based on near-field measurements. By making the range compact, costs are significantly reduced. In addition, the extrapolation technique uses over-sampling and averaging techniques to minimize the effects of scattering and range imperfections.

The tabletop extrapolation range is used to measure the gain (increase in signal power) and polarization (orientation of the electric field) of high-performance antennas. To make measurements, one antenna is fixed on the table and a second is moved along a rail. A laser tracker is used for alignment and positioning. The laser tracker is capable of following a moving target with less than 20 micrometer uncertainty at 1,000 points per second. The range is arranged on an optical table to provide the mechanical isolation and stability necessary to achieve low uncertainties at short wavelengths of radiation. Typical measurement uncertainty for certain types of antennas in the 60 – 110 GHz range approaches that of NIST's existing calibration facilities for antennas operating at lower frequencies (less that 60 GHz).

Source: National Institute of Standards and Technology (NIST)

Explore further: Dubai plans to build 3-D printed office building

Related Stories

Chemists characterize 3-D macroporous hydrogels

2 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Hidden cameras, invisibility cloaks in Israeli spy expo

2 hours ago

Hidden cameras, invisibility cloaks and mini-drones were among the gadgets on display Tuesday at an exhibition of Israeli surveillance technology, offering a rare peek into the secretive world of Israeli ...

Recommended for you

New capability takes sensor fabrication to a new level

12 hours ago

Operators must continually monitor conditions in power plants to assure they are operating safely and efficiently. Researchers on the Sensors and Controls Team at DOE's National Energy Technology Laboratory ...

Smart phones spot tired drivers

13 hours ago

An electronic accelerometer of the kind found in most smart phones that let the device determine its orientation and respond to movement, could also be used to save lives on our roads, according to research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.