HP Licenses Technology to Create Nanoscale Electronic Devices

May 2, 2007

HP today announced that it is beginning to reap returns from its 10-year investment in nanoscale electronics with the licensing of technology that could enable the fabrication of semiconductor chips significantly more powerful than those available today.

The technology involves a process called nanoimprint lithography (NIL) – a method of literally stamping out patterns of wires less than 50 atoms wide on a substrate. HP Labs researchers have created patented NIL technology, which has enabled the fabrication of laboratory prototype circuits with wire widths of 15 nanometers – about one-third the dimension of the features in the most advanced circuits that will be commercially available this year.

Once the NIL “master” is created, copies can be stamped out quickly and inexpensively, like manufacturing CDs or phonograph records. The patterns are then filled in with metals for the wires.

HP has licensed the technology to Nanolithosolutions, Inc., of Carlsbad, Calif., which has developed a tool based on HP’s technology. The tool consists of a module that fits into a mask aligner. The module is used to create the patterns for wires and transistors on a substrate. The tool is simple and inexpensive to use and turns commonly available mask aligners into high-resolution NIL machines. The technology is also being offered to others through HP’s Intellectual Property Licensing organization.

“By building on HP’s extensive research in nanoimprint lithography, we believe we have a tool that will enable reliable, repeatable processes for exploring biochips, photonics chips and many other applications,” said Bo Pi, chief executive officer, Nanolithosolutions. “We believe this will be an extremely useful tool for academic and commercial users worldwide because it will be about a tenth the cost of current technology.”

Nanolithosolutions was created by Pi and Yong Chen, a UCLA professor and former member of HP Labs. HP also has an equity stake in the company. Further details of the arrangements were not disclosed.

“Because HP and other companies need unique tools to conduct nanoscale research and development, we created the underlying technology that makes this tool possible,” said Stan Williams, HP Senior Fellow and director, Quantum Science Research, HP Labs. “But we rely on innovative companies like Nanolithosolutions to do the additional engineering necessary to make user-friendly tools commercially available. This will help create future generations of chips that will go beyond the capabilities of today’s fabrication technologies at an affordable cost.”

Source: HP

Explore further: Schlieren images reveal supersonic shock waves

Related Stories

Schlieren images reveal supersonic shock waves

August 27, 2015

NASA researchers in California are using a modern version of a 150-year-old German photography technique to capture images of shock waves created by supersonic airplanes. Over the past five years scientists from NASA's Armstrong ...

Team develops app that makes texting easier

August 21, 2015

A smartphone app that makes texting and emailing much easier – particularly for older people and those who have difficulty spelling – has been created by University of Strathclyde researchers.

Recommended for you

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.