HP Licenses Technology to Create Nanoscale Electronic Devices

May 2, 2007

HP today announced that it is beginning to reap returns from its 10-year investment in nanoscale electronics with the licensing of technology that could enable the fabrication of semiconductor chips significantly more powerful than those available today.

The technology involves a process called nanoimprint lithography (NIL) – a method of literally stamping out patterns of wires less than 50 atoms wide on a substrate. HP Labs researchers have created patented NIL technology, which has enabled the fabrication of laboratory prototype circuits with wire widths of 15 nanometers – about one-third the dimension of the features in the most advanced circuits that will be commercially available this year.

Once the NIL “master” is created, copies can be stamped out quickly and inexpensively, like manufacturing CDs or phonograph records. The patterns are then filled in with metals for the wires.

HP has licensed the technology to Nanolithosolutions, Inc., of Carlsbad, Calif., which has developed a tool based on HP’s technology. The tool consists of a module that fits into a mask aligner. The module is used to create the patterns for wires and transistors on a substrate. The tool is simple and inexpensive to use and turns commonly available mask aligners into high-resolution NIL machines. The technology is also being offered to others through HP’s Intellectual Property Licensing organization.

“By building on HP’s extensive research in nanoimprint lithography, we believe we have a tool that will enable reliable, repeatable processes for exploring biochips, photonics chips and many other applications,” said Bo Pi, chief executive officer, Nanolithosolutions. “We believe this will be an extremely useful tool for academic and commercial users worldwide because it will be about a tenth the cost of current technology.”

Nanolithosolutions was created by Pi and Yong Chen, a UCLA professor and former member of HP Labs. HP also has an equity stake in the company. Further details of the arrangements were not disclosed.

“Because HP and other companies need unique tools to conduct nanoscale research and development, we created the underlying technology that makes this tool possible,” said Stan Williams, HP Senior Fellow and director, Quantum Science Research, HP Labs. “But we rely on innovative companies like Nanolithosolutions to do the additional engineering necessary to make user-friendly tools commercially available. This will help create future generations of chips that will go beyond the capabilities of today’s fabrication technologies at an affordable cost.”

Source: HP

Explore further: Greater global outreach eyed for Micro:bit minicomputer

Related Stories

Greater global outreach eyed for Micro:bit minicomputer

October 20, 2016

(Tech Xplore)—Kid coders is an idea everyone likes. The vision is that of a new army of survivors who can carry the ball forward in thinking up tomorrow's hardware and software, to make life interesting for themselves and ...

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

Study finds 'lurking malice' in cloud hosting services

October 18, 2016

A study of 20 major cloud hosting services has found that as many as 10 percent of the repositories hosted by them had been compromised - with several hundred of the "buckets" actively providing malware. Such bad content ...

Moving toward computing at the speed of thought

October 20, 2016

The first computers cost millions of dollars and were locked inside rooms equipped with special electrical circuits and air conditioning. The only people who could use them had been trained to write programs in that specific ...

Recommended for you

Smashing metallic cubes toughens them up

October 20, 2016

Scientists at Rice University are smashing metallic micro-cubes to make them ultrastrong and tough by rearranging their nanostructures upon impact.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.