Protein Cage Helps Nanoparticles Target Tumors

January 17, 2007

Researchers at Montana State University have used an engineered form of ferritin, a cage-like iron storage protein, to both synthesize and deliver iron oxide nanoparticles to tumors. The investigators, led by Trevor Douglas, Ph.D., and Mark Young, Ph.D., reported their findings in the Journal of the American Chemical Society.

Normally, human ferritin comprises two subunits that together create a protein that can store iron and ferry it throughout the body. For this work, however, the researchers used a genetically engineered form of the protein that contains only one subunit and that also contains a short peptide that binds to the blood vessels that surround cells.

This engineered ferritin protein self-assembles into a cage-like structure that catalyzes the conversion of soluble iron into nanoscale iron oxide particles. Those iron oxide nanoparticles, containing between 3,000 and 5,000 iron atoms among them, grow within each protein cage, creating a tumor-targeted protein nanostructure that can act as a magnetic resonance imaging (MRI) contrast agent.

Experiments with tumor cells growing in culture demonstrated that these engineered nanostructures were capable of binding to tumor cells expressing a protein known as ævß3. The researchers note that the use of other cage-like proteins, instead of ferritin, could provide a wide range of tools for targeting tumors and delivering imaging agents and drugs to malignant cells. They believe that their method for producing these proteins in a form engineered to display tumor-targeting peptides should also prove to be a generally useful technique.

This work is detailed in a paper titled, “Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles.” An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Researchers put brains together for clearer picture of Alzheimer's cause

Related Stories

Modular construction—on a molecular scale

June 13, 2016

Modular constructions from cages (proteins), hubs (metal ions), and struts (organic linkers) allows the rational design of porous scaffolds. The inherent chemical and structural diversity of these building blocks leads to ...

Parkinson's disease: Iron accumulation to the point of demise

August 19, 2009

Neurons that produce the neurotransmitter dopamine are the cerebral cells that most commonly die-off in Parkinson's disease. The cells in the so-called substantia nigra, which contain the dark pigment neuromelanin, are affected. ...

Spinach and nanodiamonds?

October 3, 2013

Popeye, the comic book hero, swears by it as do generations of parents who delight their children with spinach. Of course, today it is known that the vegetable is not quite as rich in iron as originally thought, but that ...

Recommended for you

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Neuromorphic computing mimics important brain feature

August 18, 2016

(Phys.org)—When you hear a sound, only some of the neurons in the auditory cortex of your brain are activated. This is because every auditory neuron is tuned to a certain range of sound, so that each neuron is more sensitive ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.