Taking entanglement beyond one ebit

January 23, 2007 feature

“Entanglement is a main part of quantum mechanics, and it is important to obtain a high degree of it in physical systems,” Lucas Lamata tells PhysOrg.com. Lucas Lamata is a scientist with the Institute for Fundamental Mathematics and Physics, CSIC, in Madrid, Spain.

His two collaborators are J.J. García-Ripoll and J.I. Cirac at the Max Planck Institute in Garching, Germany. They propose a way in which to take entanglement beyond its current limit of one ebit. Their Suggestion is titled “How Much Entanglement Can Be Generated between Two Atoms by Detecting Photons?” and appears in Physical Review Letters.

Entangled atoms are important to quantum information processing, and many groups are working to create models of quantum computers and efficient methods of entanglement. Different schemes for quantum information processors and quantum networks are appearing all over the world. The idea is to find the best way of transmitting quantum information over distances from one place to another. “Keeping coherence when the atoms get entangled” is of the utmost importance Lamata points out.

However, even though photons are considered ideal for this job, they are not particularly good for storing information. Atoms, on the other hand, can preserve quantum information in storage for much longer times. Lamata and his colleagues believe that photonic channels connecting a network of atomic (or even solid-state) devices will be the best way to achieve a quantum network. And this means a better method of entanglement is needed. A method that better preserves quantum information.

Lamata and his colleagues focus on the entanglement between two atoms for their theory. Most experimental entanglements are based on entangling atoms separated by distance are based on one of two methods: photon emissions from one atom interacting with the second atom, and measuring the state of the photons emitted by both atoms. However, Lamata explains, most of these experiments deal with “entangling the polarization of the photon with the internal state of the atom. This is finite, so one cannot obtain more than one entanglement bit or ebit. This is inefficient.”

Lamata and his coauthors suggest a new way to entangle these atoms. Their proposal considers more than just the internal state of the atoms. “We thought that by considering various things, like momentum, it would be possible to do more entanglement.” And this would expand the entanglement beyond the current excepted maximum of one ebit. “This is a bipartite system, and similar to the method of using photons emitted by both atoms. But we consider other possibilities that have not been seriously considered yet.”

According to Lamata, this suggestion is not something that has to be put off until the future brings with it different technology. “We are not experimentalists,” he explains, “but we already have feedback from experimental groups that say they are interested in doing this.” The suggestion posed by Lamata and his colleagues might offer the possibility of making quantum information processing progress in the near future. Lamata insists: “This is something that can provide more efficient entanglement. With this proposal, we thing that it is attainable today.”

By Miranda Marquit, Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Physicists set quantum record by using photons to carry messages from electrons almost 2 kilometers apart

Related Stories

Quantum computer coding in silicon now possible

November 16, 2015

A team of Australian engineers has proven—with the highest score ever obtained—that a quantum version of computer code can be written, and manipulated, using two quantum bits in a silicon microchip. The advance removes ...

It's a beauty: JILA's quantum crystal is now more valuable

November 5, 2015

Physicists at JILA have made their "quantum crystal" of ultracold molecules more valuable than ever by packing about five times more molecules into it. The denser crystal will help scientists unlock the secrets of magnets ...

Entering the strange world of ultra-cold chemistry

November 2, 2015

Researchers at the Georgia Institute of Technology have received a $900,000 grant from the U.S. Air Force Office of Scientific Research (AFOSR) to study the unusual chemical and physical properties of atoms and molecules ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.