Changes in Solar Brightness Too Weak to Explain Global Warming

September 13, 2006
The Sun

Changes in the Sun's brightness over the past millennium have had only a small effect on Earth's climate, according to a review of existing results and new calculations performed by researchers in the United States, Switzerland, and Germany.

The review, led by Peter Foukal (Heliophysics, Inc.), appears in the September 14 issue of Nature. Among the coauthors is Tom Wigley of the National Center for Atmospheric Research. NCAR’s primary sponsor is the National Science Foundation.

“Our results imply that, over the past century, climate change due to human influences must far outweigh the effects of changes in the Sun's brightness,” says Wigley.

Reconstructions of climate over the past millennium show a warming since the 17th century, which has accelerated dramatically over the past 100 years. Many recent studies have attributed the bulk of 20th-century global warming to an increase in greenhouse gas concentrations in the atmosphere. Natural internal variability of Earth’s climate system may also have played a role. However, the discussion is complicated by a third possibility: that the Sun's brightness could have increased.

The new review in Nature examines the factors observed by astronomers that relate to solar brightness. It then analyzes how those factors have changed along with global temperature over the last 1,000 years.

Brightness variations are the result of changes in the amount of the Sun’s surface covered by dark sunspots and by bright points called faculae. The sunspots act as thermal plugs, diverting heat from the solar surface, while the faculae act as thermal leaks, allowing heat from subsurface layers to escape more readily. During times of high solar activity, both the sunspots and faculae increase, but the effect of the faculae dominates, leading to an overall increase in brightness.

The new study looked at observations of solar brightness since 1978 and at indirect measures before then, in order to assess how sunspots and faculae affect the Sun’s brightness. Data collected from radiometers on U.S. and European spacecraft show that the Sun is about 0.07 percent brighter in years of peak sunspot activity, such as around 2000, than when spots are rare (as they are now, at the low end of the 11-year solar cycle). Variations of this magnitude are too small to have contributed appreciably to the accelerated global warming observed since the mid-1970s, according to the study, and there is no sign of a net increase in brightness over the period.

To assess the period before 1978, the authors used historical records of sunspot activity and examined radioisotopes produced in Earth's atmosphere and recorded in the Greenland and Antarctic ice sheets. During periods of high solar activity, the enhanced solar wind shields Earth from cosmic rays that produce the isotopes, thus giving scientists a record of the activity.

The authors used a blend of seven recent reconstructions of Northern Hemisphere temperature over the past millennium to test the effects of long-term changes in brightness. They then assessed how much the changes in solar brightness produced by sunspots and faculae (as measured by the sunspot and radioisotope data) might have affected temperature. Even though sunspots and faculae have increased over the last 400 years, these phenomena explain only a small fraction of global warming over the period, according to the authors.

Indirect evidence has suggested that there may be changes in solar brightness, over periods of centuries, beyond changes associated with sunspot numbers. However, the authors conclude on theoretical grounds that these additional low-frequency changes are unlikely.

“There is no plausible physical cause for long-term changes in solar brightness other than changes caused by sunspots and faculae,” says Wigley.

Apart from solar brightness, more subtle influences on climate from cosmic rays or the Sun's ultraviolet radiation cannot be excluded, say the authors. However, these influences cannot be confirmed, they add, because physical models for such effects are still too poorly developed.

Source: National Center for Atmospheric Research

Explore further: Mariner 4 to Mars, 50 years later

Related Stories

Mariner 4 to Mars, 50 years later

July 15, 2015

July 14 marks 50 years of visual reconnaissance of the solar system by NASA's Jet Propulsion Laboratory (JPL), beginning with Mariner 4's flyby of Mars in 1965.

SOHO image: Here comes the sun

July 13, 2015

The Solar and Heliospheric Observatory (SOHO) has been watching the Sun for almost 20 years. In that time it has seen solar activity ramp up and die down repeatedly. Its Extreme ultraviolet Imaging Telescope has taken images ...

NASA missions have their eyes peeled on Pluto

July 10, 2015

What's icy, has "wobbly" potato-shaped moons, and is arguably the world's favorite dwarf planet? The answer is Pluto, and NASA's New Horizons is speeding towards the edge of our solar system for a July 14 flyby. It won't ...

Once around the sun with Jupiter

July 9, 2015

For Jupiterians (Jovians?) a trip around the sun takes 12 Earth years. If you were born today on the planet or one of its moons, you'd turn one year old in 2027 and reach the ripe old age of 12 in 2111.

Scientists study atmosphere of Venus through transit images

July 9, 2015

Two of NASA's heliophysics missions can now claim planetary science on their list of scientific findings. A group of scientists used the Venus transit - a very rare event where a planet passes between Earth and the sun, appearing ...

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

Researchers find reasons behind increases in urban flooding

July 27, 2015

Scientists at the University of South Florida's College of Marine Science investigating the increasing risk of 'compound flooding' for major U.S. cities have found that flooding risk is greatest for cities along the Atlantic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.