Double Quantum Dots Control Kondo Effect

September 15, 2006

Two quantum dots connected by wires could help scientists better control the Kondo effect in experiments, according to a study by Ohio University and University of Florida physicists published in a recent issue of Physical Review Letters.

The Kondo effect occurs when electrons become trapped around the magnetic impurities in semiconductor materials, which prompts the electrons to change their spin. This phenomenon has intrigued scientists, as electronic correlations can create interesting and complex behavior in materials.

In the new work, scientists demonstrate how the two quantum dot system can behave in two different and interesting ways: As a simile for a Kondo-effect system where one quantum dot is used to "filter" the effect of the current leads, and as a way to study "pseudo-gapped" systems and correlations in them, which can help scientists understand structures such as superconductors.

“This last part is of great current interest to theorists and experimentalists who are exploring what are called quantum phase transitions, which are changes in systems that alter their behavior dramatically as a function of some parameter while remaining at zero (or very low) temperature,” said Sergio Ulloa, a professor of physics and astronomy at Ohio University.

The study, funded by the National Science Foundation, was conducted by Luis Dias da Silva, Nancy Sandler and Ulloa, all members of the Ohio University’s Nanoscale and Quantum Phenomena Institute, and Kevin Ingersent of the University of Florida.

Source: Ohio University

Explore further: Best of Last Week–Confirming quantum weirdness, revolutionary bionic lens and connecting our brains directly to Internet

Related Stories

Researchers prove magnetism can control heat, sound

May 28, 2015

Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by a researcher group ...

Recommended for you

Fast times and hot spots in plasmonic nanostructures

August 4, 2015

The ability to control the time-resolved optical responses of hybrid plasmonic nanostructures was demonstrated by a team led by scientists in the Nanophotonics Group at the Center for Nanoscale Materials including collaborators ...

Study explores nanoscale structure of thin films

August 4, 2015

The world's newest and brightest synchrotron light source—the National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory—has produced one of the first publications ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.