Researchers seed, heat and grow carbon nanotubes in long tubing

August 3, 2006

In less than 20 minutes, researchers at New Jersey Institute of Technology (NJIT) can now seed, heat and grow carbon nanotubes in 10-foot-long, hollow thin steel tubing.

"The work took us three years to develop and get right, but now we can essentially anchor nanotubes to a tubular wall. No one has ever done anything like this before," said lead researcher Somenath Mitra, PhD, professor and acting chair of NJIT's Dep't of Chemistry and Environmental Science. Graduate and post-doctoral students who worked on the project are Mahesh Karwa, Chutarat Saridara and Roman Brukh.

The ground-breaking method will lead to improvements in cleaner gasoline, better food processing and faster, cheaper ways to clean air and water.

The discovery was recently described in the Journal of Material Chemistry, June 14, 2006, by Mitra and his team in "Selective Self-assembly of Single Walled Carbon Nanotubes in Long Steel Tubing for Chemical Separation." Other journals featuring their work are Chemical Physics Letters and Carbon and Analytical Chemistry.

A carbon nanotube is a molecular configuration of carbon in a cylindrical shape. The name is derived in part from the tube's miniscule size. Scientists estimate nanotubes are 50,000 times smaller than a human hair.

Until recently researchers have relied on the nanotubes which researchers purchase as a powder. The nanotubes are said to have remarkable, if not almost magical, properties. For example, by simply mixing the powder with polymers or chemicals, films and composites can be made.

However, the method has drawbacks. "We have never been able to anchor the powder to a large surface, nor can we grow the nanotubes in a large device. Typically we could only produce them in minute amounts, if we used the powder substance," said Mitra. Now everything has changed.

Using a catalyst either prepared on the steel surface or enabled by a chemical deposition process, the NJIT inventors have created nanotubes which can stick to the walls of narrow or wide tubes. And, they can grow considerably larger amounts of them, making the process more attractive and viable for industrial usages.

Source: New Jersey Institute of Technology

Explore further: Self-assembling, biomimetic membranes may aid water filtration

Related Stories

Carbon nanotube speakers play music with heat

July 28, 2015

Troy Bouman reaches over, presses play, and the loudspeaker sitting on the desk starts playing the university fight song. But this is no ordinary loudspeaker. This is a carbon nanotube transducer—and it makes sound with ...

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.