Researchers harness the power of bacteria

August 22, 2006

Looking for alternatives to world reliance on fossil fuels for energy, an interdisciplinary team of University of Wisconsin-Madison researchers is studying ways to generate electricity by feeding a species of photosynthetic bacteria a steady diet of sunshine and wastewater.

The concept of such so-called microbial fuel cells emerged nearly three decades ago when an English researcher fed carbohydrates to a bacteria culture, connected electrodes and produced tiny amounts of electricity. Although a few research groups are studying them, microbial fuel cells largely live in the realm of laboratory entertainment and high-school science experiments, says civil and environmental engineering Professor Daniel Noguera. "Now, the idea is taking shape that this could become a real alternative source for energy," he says.

Noguera, civil and environmental engineering Professor Marc Anderson, civil and environmental engineering Assistant Professor Trina McMahon, bacteriology Professor Timothy Donohue, senior scientist Isabel Tejedor-Anderson and graduate students Yun Kyung Cho and Rodolfo Perez hope to develop a large-scale microbial fuel cell system for use in wastewater treatment plants. "It's inexpensive," says Noguera of the nutrient-rich wastewater food source. "We treat the wastewater anyway, so you are using a lot of energy to do that."

In nature, says McMahon, photosynthetic bacteria effectively extract energy from their food — and microbial fuel cells capitalize on that efficiency. "By having the microbes strip the electrons out of the organic waste, and turning that into electricity, then we can make a process of conversion more efficient," she says. "And they're very good at doing that-much better than we are with our high-tech extraction methods."

Through machinery such as plants, photosynthetic bacteria harvest solar energy. They also make products to power microbial fuel cells. "In many ways, this is the best of both worlds — generating electricity from a 'free' energy source like sunlight and removing wastes at the same time," says Donohue. "The trick is to bring ideas from different disciplines to develop biorefineries and fuel cells that take advantage of the capabilities of photosynthetic bacteria."

The benefit of using photosynthetic bacteria, he says, is that solar-powered microbial fuel cells can generate additional electricity when sunlight is available.

Currently, the microbes live in sealed, oxygen-free test tubes configured to resemble an electrical circuit. Known as a microbial fuel cell, this environment tricks the organisms into delivering byproducts of their wastewater dinner — in this case, extra electrons — to an anode, where they travel through a circuit toward a cathode. Protons, another byproduct, pass through an ion-exchange membrane en route to the cathode. There, the electrons and protons react with oxygen to form water.

One microbial fuel cell produces a theoretical maximum of 1.2 volts; however, like a battery, several connected fuel cells could generate enough voltage to be useful power sources. "The challenge is thinking about how to scale this up from the little toys we have in the lab to something that works in the home, on farms, or is as large as a wastewater treatment plant," says Noguera.

For now, the researchers are combining their expertise in materials science, bacteriology and engineering to optimize fuel cell configuration.

Source: University of Wisconsin-Madison, by Renee Meiller

Explore further: New biosensors for managing microbial 'workers'

Related Stories

New biosensors for managing microbial 'workers'

August 4, 2015

Super productive factories of the future could employ fleets of genetically engineered bacterial cells, such as common E. coli, to produce valuable chemical commodities in an environmentally friendly way. By leveraging their ...

Unlocking fermentation secrets open the door to new biofuels

June 24, 2015

Researchers from the University of Illinois at Urbana-Champaign have, for the first time, uncovered the complex interdependence and orchestration of metabolic reactions, gene regulation, and environmental cues of clostridial ...

Stainless Steel Catalyst Lowers Cost of Microbial Fuel Cells

February 23, 2009

(PhysOrg.com) -- Tiny bacteria munching on and metabolizing biodegradable materials can produce electrons that could be harnessed by microbial fuel cells for energy. By taking advantage of the catalytic reactions of these ...

Power-generating urinal pioneered in Britain

March 5, 2015

British scientists on Thursday unveiled a toilet that unlocks energy stored within urine to generate electricity, which they hope could be used to light remote places such as refugee camps.

Recommended for you

How to curb emissions? Put a price on carbon

September 3, 2015

Literally putting a price on carbon pollution and other greenhouse gasses is the best approach for nurturing the rapid growth of renewable energy and reducing emissions.

Magnetic fields provide a new way to communicate wirelessly

September 1, 2015

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power ...

For these 'cyborgs', keys are so yesterday

September 4, 2015

Punching in security codes to deactivate the alarm at his store became a thing of the past for Jowan Oesterlund when he implanted a chip into his hand about 18 months ago.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.