Nano World: Black silicon for solar power

June 23, 2006

Silicon surfaces rendered black by pits and bumps only nanometers or billionths of a meter large could in the future help make solar power cells more efficient.

Flat silicon surfaces are normally highly reflective. Scientists want to minimize reflection as much as possible when it comes to solar power cells made of silicon, because the more light they reflect, the less they convert to electricity. Often, anti-reflective coatings are used, which reduce the amount of average reflection in the wavelengths of light solar power cells use by 85 percent to 92 percent.

The novel treatment developed by researchers at the Technical University of Munich can cut the surface reflection silicon experiences by 95 percent to 98 percent across the wavelengths of light solar power cells use, making them black.

"The results are really good when it comes to preventing reflection. It is still speculative as to how much this can boost the efficiency of solar cells. I am optimistic that for traditional designs of solar cells, it could give a 15 to 20 percent improvement with respect to their present efficiency. The performance of some solar cells with novel design could be improved even more dramatically. However, I think we will need a bit of time to show this," said researcher Svetoslav Koynov, a physicist.

The researchers created nanometer pits and bumps on the silicon, which end up helping to absorb light. Prior techniques had developed such textures on silicon as well using plasma etching, but are complex, difficult to work over large surfaces and can incur damage, making large-scale production of solar power cells with them a problem.

Koynov and his colleagues instead developed a simple and fast technique that creates these textures using wet chemical processes. Their method works regardless of the crystalline structure of the silicon, its thickness, or what extra chemical additives it possesses. The fact the technique is so flexible could mean it could work on silicon surfaces that cannot handle other kinds of anti-reflection treatments, such as the silicon thin films used in advanced hybrid solar cells, Koynov suggested.

First the researchers deposit grains of gold only nanometers large onto a flat silicon surface. Next the silicon between the areas covered by the clusters is etched away with a solution of hydrogen peroxide and hydrofluoric acid. The gold nanoparticles exhibit catalytic action, "behaving like drills into the surface," Koynov said. The areas covered by the gold form 50-to-100-nanometer-high pits on the surface while the silicon between the gold makes up the bumps. The nanoparticles are then removed with a solution of iodine and potassium iodide.

"This is a very easy way to get an extremely non-reflective silicon surface," said physicist Howard Branz at the National Renewable Energy Laboratory in Golden, Colo. "We've tried it and it works."

The researchers are currently attempting to establish an industrial partner to advance their method forward. "If we are able to establish a good connection with an industrial partner, I'd hope in one to three years we could go to market," Koynov said.

"This is an important breakthrough on an important problem," said theoretical physicist Alexander Efros at the Naval Research Laboratory in Washington. "It is clear this could find application for increasing the efficiency of solar cells."

Koynov cautioned the gold nanoparticles could react unfavorably with the semiconductors in solar cells. He added his team has experimented with using other metal nanoparticles as well, with some success.

Copyright 2006 by United Press International

Explore further: Artificial moth eyes enhance the performance of silicon solar cells

Related Stories

Nanowires give 'solar fuel cell' efficiency a tenfold boost

July 17, 2015

A solar cell that produces fuel rather than electricity. Researchers at Eindhoven University of Technology (TU/e) and FOM Foundation today present a very promising prototype of this in the journal Nature Communications. The ...

Where is solar power headed?

July 22, 2015

Most experts agree that to have a shot at curbing the worst impacts of climate change, we need to extricate our society from fossil fuels and ramp up our use of renewable energy.

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.