Hubble Reveals Two Dust Disks Around Nearby Star

June 27, 2006
Hubble Reveals Two Dust Disks Around Nearby Star
Credit: Credit: NASA, ESA, D. Golimowski (Johns Hopkins University), D. Ardila (IPAC), J. Krist (JPL), M. Clampin (GSFC), H. Ford (JHU), and Garth Illingworth (UCO/Lick) and the ACS Science Team

NASA's Hubble Space Telescope has revealed two dust disks circling the nearby star Beta Pictoris. The images confirm a decade of scientific speculation that a warp in the young star's dust disk may actually be a second inclined disk, which is evidence for the possibility of at least one Jupiter-size planet orbiting the star.

The disk is fainter than the star because, at the visible wavelengths measured, its dust only reflects light. To see the faint disk, astronomers used Hubble’s Advanced Camera for Surveys' coronagraph, which blocked the light from Beta Pictoris. The images clearly show a distinct secondary disk that is tilted by about four degrees from the main disk. The secondary disk is visible out to roughly 24 billion miles from the star, and probably extends even farther. The finding appears in the June 2006 issue of the Astronomical Journal.

The best explanation for the observations is that a suspected unseen planet, up to 20 times the mass of Jupiter and in an orbit within the secondary disk, is using gravity to sweep up material from the primary disk.

"The Hubble observation shows that it is not simply a warp in the dust disk but two concentrations of dust in two separate disks," said lead astronomer David Golimowski of Johns Hopkins University in Baltimore. "The finding suggests that planets could be forming in two different planes. We know this can happen because the planets in our solar system are typically inclined to Earth's orbit by several degrees. Perhaps stars forming more than one dust disk may be the norm in the formative years of a star system."

Computer models by David Mouillet and Jean-Charles Augereau of Grenoble Observatory in France suggest how a secondary dust disk can form. A massive planet in an inclined orbit gravitationally attracts small bodies of rock and/or ice, called planetesimals, from the main disk, and moves them into an orbit aligned with that of the planet.

These perturbed planetesimals then collide with each other, producing the tilted dust disk seen in the new Hubble images.

"The actual lifetime of a dust grain is relatively short, maybe a few hundred thousand years," Golimowski said. "So the fact that we can still see these disks around a 10- to 20-million-year-old star means that the dust is being replenished by collisions between planetesimals."

Astronomers do not know how the massive planet, if it exists, settled into an inclined orbit. However, computer simulations by multiple research teams show planet embryos, which start out in a very thin plane, can, through gravitational interactions, scatter into orbits that become inclined to the primary disk.

Beta Pictoris is located 63 light-years away in the southern constellation Pictor. Although the star is much younger than the sun, it is twice as massive and nine times more luminous. Beta Pictoris entered the limelight more than 20 years ago when the multinational Infrared Astronomical Satellite detected excess infrared radiation from the star. Astronomers attributed this excess to the presence of warm dust in a disk around the star. The dust disk was first imaged by ground-based telescopes in 1984. The images showed the disk is seen nearly edge-on from Earth. Hubble observations in 1995 revealed an apparent warp in the disk. Subsequent images obtained in 2000 by Hubble's Imaging Spectrograph confirmed the warp.

The latter study was led by Sara Heap of NASA's Goddard Space Flight Center in Greenbelt, Md. Heap and her colleagues suggested the apparent warp may be an unresolved secondary disk tilted about four degrees from the main disk. Several teams of astronomers attributed the warp to a planet in a tilted orbit out of the plane of the main disk.

Astronomers using ground-based telescopes also found various asymmetries in the star's disk. Infrared images taken in 2002 by the Keck II Observatory in Hawaii showed that another smaller inner disk may exist around the star in a region the size of our solar system. Golimowski's team did not spot the inner disk because it is small and blocked by the Advanced Camera's coronagraph. This possible inner disk is tilted in the opposite direction from the disk seen in the new Hubble images. This misalignment implies the tilted disks are not directly related. Nevertheless, they both may bolster evidence for the existence of one or more planets orbiting the star.

Source: NASA

Explore further: Brown dwarfs, stars share formation process, new study indicates

Related Stories

Hubble looks at stunning spiral

July 13, 2015

This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way.

Why can't we see the center of the Milky Way?

July 10, 2015

For millennia, human beings have stared up at the night sky and stood in awe of the Milky Way. Today, stargazers and amateur astronomers continue in this tradition, knowing that what they are witnessing is in fact a collection ...

Why don't we send probes "up" in the solar system?

July 10, 2015

Dammit, science people! Why are you always firing probes "outwards"? Then they have to go past all this stuff, like planets and asteroids and crap to escape the solar system. Don't you realize that if we want to see what's ...

Radio astronomers see black hole come to life

July 9, 2015

42 million light years away, 20 million times the mass of the Sun, and coming back to life. A team of radio astronomers, led by Dr Megan Argo of the Jodrell Bank Centre for Astrophysics, are watching a previously dormant ...

Recommended for you

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Binary star system precisely timed with pulsar's gamma-rays

July 31, 2015

Pulsars are rapidly rotating compact remnants born in the explosions of massive stars. They can be observed through their lighthouse-like beams of radio waves and gamma-rays. Scientists at the Max Planck Institute for Gravitational ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.