Researchers Determine How Plants Decide Where to Position Their Leaves and Flowers

Apr 04, 2006

One of the quests of modern biologists is to understand how cells talk to each other in order to determine where to form major organs. An international team of biologists has solved a part of this puzzle by combining state-of-the-art imaging and mathematical modeling to reveal how plants go about positioning their leaves and flowers.

In the January 31 issue of the Proceedings of the National Academy of Sciences, researchers from the California Institute of Technology, the University of California at Irvine, and Lund University in Sweden reported their success in determining how a plant hormone known as auxin affects plant organ positioning. Experts already knew that auxin played some role in the development of plant organs, but the new study employs imaging techniques and computer modeling to propose a new theory about how the mechanism works.

The research involves the growing tip of the shoot of the plant Arabidopsis thaliana, a relative of the mustard plant that has been studied intensely by modern biologists. With its simple and very well understood genome, Arabidopsis lends itself to a wide variety of experiments.

The achievement of the researchers is their demonstration of how plant cells, with purely local information about their nearest neighbors' internal concentration of auxin, can communicate to determine the position of new flowers or leaves, which form in a regular pattern, with many cells separating the newly formed primordia (the first traces of an organ or structure). The authors theorize that the template the plant uses to make the larger parts comes from two mechanisms: a polarized transport of auxin into a feedback loop and a dynamic geometry arising from the growth and division of cells.

To capture the development, Beadle Professor of Biology Elliot Meyerowitz, division chair of the biology division at Caltech, and his team used green fluorescent proteins to mark specific cell types in the plant's meristem, the plant tissue in which regulated cell division, pattern formation, and differentiation give rise to plant parts like leaves and flowers.

The marked proteins allowed the group to image the cell's lineages through meristem development and differentiation leading to specific arrangement of leaves and reproductive growth, and also to follow changes in the concentration and movement of auxin.

Although the study applies specifically to the Arabidopsis plant, Meyerowitz says the mechanism is probably similar for other plants and even other biological systems in which patterning occurs in the course of development.

In addition to Meyerowitz, the paper's authors are Henrik J├Ânsson of Lund University, Marcus G. Heisler of Caltech's Division of Biology, Bruce E. Shapiro of Caltech's Biological Network Modeling Center, and Eric Mjolsness of UC Irvine's Institute of Genomics and Bioinformatics and department of computer science.

Source: Caltech

Explore further: Explainer: How to solve a jewel heist (and why it takes so long)

Related Stories

Tracking photosynthesis from space

May 05, 2015

Watching plants perform photosynthesis from space sounds like a futuristic proposal, but a new application of data from NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite may enable scientists to do just ...

Role of telomeres in plant stem cells discovered

Apr 30, 2015

The role played by telomeres in mammalian cells has been known for several years. It is also known that these non-coding DNA sequences, which are found at the ends of the chromosomes, protect them and are ...

How to make trees grow bigger and quicker

Apr 16, 2015

Scientists at The University of Manchester have discovered a way to make trees grow bigger and faster, which could increase supplies of renewable resources and help trees cope with the effects of climate change.

How to train your astronauts

Apr 06, 2015

Training an astronaut is no easy task. Astronauts go through years of rigorous technical, health and safety training to learn simple and complex tasks for a typical four to six month mission. They develop ...

Recommended for you

Top UK scientists warn against EU exit

12 hours ago

A group of leading British scientists including Nobel-winning geneticist Paul Nurse warned leaving the European Union could threaten research funding, in a letter published in The Times newspaper on Friday.

How we discovered the three revolutions of American pop

12 hours ago

Dr Matthias Mauch discusses his recent scientific analysis of the "fossil record" of the Billboard charts prompted widespread attention, particularly the findings about the three musical "revolutions" that shaped the musical la ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.