Study offers new recipe for oxygen on icy moons

March 27, 2006

Some may be surprised to learn that bleach-blondes and the enabler of life elsewhere in our solar system have something in common. And, no, it's not intelligence. It is, in fact, hydrogen peroxide. But how that hydrogen peroxide emerges from ice to become life-sustaining oxygen has been unclear. Now, a new study at the Department of Energy's Pacific Northwest National Laboratory in Richland, Wash., offers the most detailed picture to date on how oxygen can be made in frigid reaches far from Earth.

Since its discovery on Jupiter's Europa and other icy moons orbiting large gaseous worlds, extraterrestrial ice as a source for oxygen has presented the tantalizing possibility of complex life around other planets. Yet planetary scientists have struggled to explain how, in the absence of sufficient heat, oxygen could be produced from the permafrost surfaces for use, in Europa's case, by whatever life forms that might inhabit oceans trapped beneath.

Europa, and detail of its icy surface. (NASA images.)

The standard explanation is that abundant high-energy particles from space--protons, ultraviolet photons, electrons--break the molecular bonds that chain oxygen to hydrogen. (The geophysics – how the oxygen gets into the ocean as ice is – is another story, one involving a conveyor-belt-like recycling of surface ice into the ocean.)

Those previous oxygen-production models, however, don't jibe with what staff scientist Greg Kimmel and his colleagues at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory have been seeing in experiments, Kimmel reported Monday at the annual meeting of the American Chemical Society.

"The previous model was a two-step process," Kimmel said. "First, an energetic particle produces a stable precursor"--say, two hydrogen atoms coupled with two oxygen atoms (hydrogen peroxide) or a hydrogen atom paired with two oxygen atoms. "In step two, another energetic particle produces O2, or molecular oxygen, from the stable precursor."

Kimmel and colleagues grew a microscopically thin ice film on a platinum surface, under a vacuum, and bombarded the film with high-energy electrons. The bursts lasted 30 to 60 seconds at 30 to 130 degrees Kelvin, approximating the minus-hundreds-of-degrees-Fahrenheit temperatures on the icy moons. Afterward, they measured the amount and location, determined by the oxygen isotopes used to construct layers of the ice film, and discovered that intermediate species of hydrogen-oxygen permeated the films.

"We found that a simpler two-step could not account for our results," Kimmel said. "Our model is a four-step process." First, the energetic particle produces what is known as a common "reactive oxygen species" called a hydroxyl radical, or OH. Next, two OH molecules react to produce hydrogen peroxide. Third, another OH reacts with the hydrogen peroxide to form HO2 (hydrogen coupled to two oxygen atoms), plus a water molecule. And, finally, an energetic particle splits an oxygen molecule from the HO2.

The experiment introduced another new twist. "One might have expected O2 to be produced throughout the region where the electrons penetrate in the film," Kimmel noted. "But this is not the case. It appears that the OH's can be made deeper in the film, but that they subsequently diffuse to and collect at the ice surface with the rest of the reactions (steps 2-4 above) preferentially occurring there."

Source: Pacific Northwest National Laboratory

Explore further: First observation made of quantum-tunneling diffusion of hydrogen atoms on ice

Related Stories

Jupiter's moon Europa

September 30, 2015

Jupiter's four largest moons – aka. the Galilean moons, consisting of Io, Europa, Ganymede and Callisto – are nothing if not fascinating. Ever since their discovery over four centuries ago, these moons have been a source ...

The moons of Jupiter

September 15, 2015

Jupiter was appropriately named by the Romans, who chose to name it after the king of the gods. In addition to being the largest planet in our Solar System – with two and a half times the mass of all the other planets combined ...

What are asteroids made of?

September 14, 2015

What are asteroids made of? Asteroids are made mostly of rock—with some composed of clay and silicate—and different metals, mostly nickel and iron. But other materials have been found in asteroids, as well.

Asteroids found to be the moon's main 'water supply'

October 1, 2015

Water reserves found on the moon are the result of asteroids acting as "delivery vehicles" and not of falling comets as was previously thought. Using computer simulation, scientists from MIPT and the RAS Geosphere Dynamics ...

The moon

September 21, 2015

Look up in the night sky. On a clear night, if you're lucky, you'll catch a glimpse of the moon shining in all it's glory. As Earth's only satellite, the moon has orbited our planet for over three and a half billion years. ...

Recommended for you

Image: Sentinel-1A captures Azore islands

October 9, 2015

This Sentinel-1A radar image was processed to depict water in blue and land in earthen colours. It features some of the Azore islands about 1600 km west of Lisbon, including the turtle-shaped Faial, the dagger-like Sao Jorge ...

What are white holes?

October 9, 2015

Black holes are created when stars die catastrophically in a supernova. So what in the universe is a white hole?

Gold nanomembranes resist bending in new experiment

October 9, 2015

The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's ...

From a very old skeleton, new insights on ancient migrations

October 9, 2015

Three years ago, a group of researchers found a cave in Ethiopia with a secret: it held the 4,500-year-old remains of a man, with his head resting on a rock pillow, his hands folded under his face, and stone flake tools surrounding ...

Image: Pluto's blue sky

October 9, 2015

Pluto's haze layer shows its blue color in this picture taken by the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC). The high-altitude haze is thought to be similar in nature to that seen at Saturn's moon ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.