Study offers new recipe for oxygen on icy moons

March 27, 2006

Some may be surprised to learn that bleach-blondes and the enabler of life elsewhere in our solar system have something in common. And, no, it's not intelligence. It is, in fact, hydrogen peroxide. But how that hydrogen peroxide emerges from ice to become life-sustaining oxygen has been unclear. Now, a new study at the Department of Energy's Pacific Northwest National Laboratory in Richland, Wash., offers the most detailed picture to date on how oxygen can be made in frigid reaches far from Earth.

Since its discovery on Jupiter's Europa and other icy moons orbiting large gaseous worlds, extraterrestrial ice as a source for oxygen has presented the tantalizing possibility of complex life around other planets. Yet planetary scientists have struggled to explain how, in the absence of sufficient heat, oxygen could be produced from the permafrost surfaces for use, in Europa's case, by whatever life forms that might inhabit oceans trapped beneath.

Europa, and detail of its icy surface. (NASA images.)
Europa, and detail of its icy surface. (NASA images.)

The standard explanation is that abundant high-energy particles from space--protons, ultraviolet photons, electrons--break the molecular bonds that chain oxygen to hydrogen. (The geophysics – how the oxygen gets into the ocean as ice is – is another story, one involving a conveyor-belt-like recycling of surface ice into the ocean.)

Those previous oxygen-production models, however, don't jibe with what staff scientist Greg Kimmel and his colleagues at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory have been seeing in experiments, Kimmel reported Monday at the annual meeting of the American Chemical Society.

"The previous model was a two-step process," Kimmel said. "First, an energetic particle produces a stable precursor"--say, two hydrogen atoms coupled with two oxygen atoms (hydrogen peroxide) or a hydrogen atom paired with two oxygen atoms. "In step two, another energetic particle produces O2, or molecular oxygen, from the stable precursor."

Kimmel and colleagues grew a microscopically thin ice film on a platinum surface, under a vacuum, and bombarded the film with high-energy electrons. The bursts lasted 30 to 60 seconds at 30 to 130 degrees Kelvin, approximating the minus-hundreds-of-degrees-Fahrenheit temperatures on the icy moons. Afterward, they measured the amount and location, determined by the oxygen isotopes used to construct layers of the ice film, and discovered that intermediate species of hydrogen-oxygen permeated the films.

"We found that a simpler two-step could not account for our results," Kimmel said. "Our model is a four-step process." First, the energetic particle produces what is known as a common "reactive oxygen species" called a hydroxyl radical, or OH. Next, two OH molecules react to produce hydrogen peroxide. Third, another OH reacts with the hydrogen peroxide to form HO2 (hydrogen coupled to two oxygen atoms), plus a water molecule. And, finally, an energetic particle splits an oxygen molecule from the HO2.

The experiment introduced another new twist. "One might have expected O2 to be produced throughout the region where the electrons penetrate in the film," Kimmel noted. "But this is not the case. It appears that the OH's can be made deeper in the film, but that they subsequently diffuse to and collect at the ice surface with the rest of the reactions (steps 2-4 above) preferentially occurring there."

Source: Pacific Northwest National Laboratory

Explore further: Macroscopic quantum phenomena discovered in ice

Related Stories

Macroscopic quantum phenomena discovered in ice

July 21, 2015

(Phys.org)—Scientists have discovered an anomaly in the properties of ice at very cold temperatures near 20 K, which they believe can be explained by the quantum tunneling of multiple protons simultaneously. The finding ...

What is Halley's Comet?

June 15, 2015

Halley's Comet, also known as 1P/Halley, is the most well known comet in the Solar System. As a periodic (or short-term comet) it has orbital period that is less than 200 years, and has therefore been observed more than once ...

The moons of Jupiter

June 10, 2015

Jupiter was appropriately named by the Romans, who chose to name it after the king of the gods. In addition to being the largest planet in our Solar System – with two and a half times the mass of all the other planets combined ...

Added power for airplane galleys

June 2, 2015

The galleys inside airliners voraciously consume power - a vital yet limited resource in a plane. Additional power units may soon come to the rescue: housed inside trolley carts in the galleys, these units deliver both supplemental ...

Recommended for you

Creating an avatar from a 3-D selfie

August 5, 2015

Generating a 3D duplicate of someone without the aid of a Hollywood studio: this is the challenge taken up by EPFL researchers, who have successfully condensed an expensive and complex process to use only a smartphone camera.

Scientists solve planetary ring riddle

August 5, 2015

In a breakthrough study, an international team of scientists, including Professor Nikolai Brilliantov from the University of Leicester, has solved an age-old scientific riddle by discovering that planetary rings, such as ...

Image: The ghost of a dying star

August 5, 2015

This extraordinary bubble, glowing like the ghost of a star in the haunting darkness of space, may appear supernatural and mysterious, but it is a familiar astronomical object: a planetary nebula, the remnants of a dying ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.