Fast-Talking NASA Spacecraft Starts Final Approach to Mars

March 8, 2006
Artist's concept of Mar Reconnaissance Orbiter near Mars
Artist's concept of Mar Reconnaissance Orbiter near Mars. Image credit: NASA/JPL

NASA's Mars Reconnaissance Orbiter has begun its final approach to the red planet after activating a sequence of commands designed to get the spacecraft successfully into orbit.

The sequence began Tuesday and will culminate with firing the craft's main thrusters for about 27 minutes on Friday -- a foot on the brakes to reduce velocity by about 20 percent as the spacecraft swings around Mars at about 5,000 meters per second (about 11,000 miles per hour). Mission controllers at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and Lockheed Martin Space Systems, Denver, are monitoring the events closely.

"We have been preparing for years for the critical events the spacecraft must execute on Friday," said JPL's Jim Graf, project manager. "By all indications, we're in great shape to succeed, but Mars has taught us never to get overconfident. Two of the last four orbiters NASA sent to Mars did not survive final approach."

Mars Reconnaissance Orbiter will build upon discoveries by five successful robots currently active at Mars: NASA rovers Spirit and Opportunity, NASA orbiters Mars Global Surveyor and Mars Odyssey, and the European Space Agency's Mars Express orbiter. It will examine Mars' surface, atmosphere and underground layers in great detail from a low orbit. It will aid future missions by scouting possible landing sites and relaying communications. It will send home up to 10 times as much data per minute as any previous Mars mission.

First, it must get into orbit. The necessary thruster burn will begin shortly after 1:24 p.m. Pacific Time on Friday. Engineers designed the burn to slow the spacecraft just enough for Mars' gravity to capture it into a very elongated elliptical orbit. A half-year period of more than 500 carefully calculated dips into Mars' atmosphere -- a process called aerobraking -- will use friction with the atmosphere to gradually shrink the orbit to the size and nearly-circular shape chosen for most advantageous use of the six onboard science instruments.

"Our primary science phase won't begin until November, but we'll actually be studying the changeable structure of Mars' atmosphere by sensing the density of the atmosphere at different altitudes each time we fly through it during aerobraking," said JPL's Dr. Richard Zurek, project scientist for the mission.

Source: NASA

Explore further: SpaceVR aims toward a VR camera in space

Related Stories

SpaceVR aims toward a VR camera in space

August 11, 2015

SpaceVR is a virtual reality platform set to share live 3D, 360 degree content from the International Space Station (ISS) so that anyone with virtual reality gear can feel like an astronaut. The company was founded in January ...

Dust storms on Mars

August 24, 2015

In the 1870's astronomers first noted the presence of yellow clouds on the surface of Mars and suggested they were caused by windblown dust. Today, dust storms on Mars are well known and those that display visible structures ...

What is the Earth's average temperature?

August 19, 2015

Earth is the only planet in the solar system where life is known to exists. Note the use of the word "known", which is indicative of the fact that our knowledge of the solar system is still in its infancy, and the search ...

Methane, water enshroud nearby Jupiter-like exoplanet

August 13, 2015

The Gemini Planet Imager has discovered and photographed its first planet, a methane-enshrouded gas giant much like Jupiter that may hold the key to understanding how large planets form in the swirling accretion disks around ...

Recommended for you

Tiny drops of early universe 'perfect' fluid

September 1, 2015

The Relativistic Heavy Ion Collider (RHIC), a particle collider for nuclear physics research at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, smashes large nuclei together at close to the speed of ...

ATLAS and CMS experiments shed light on Higgs properties

September 1, 2015

Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations present for the first time combined measurements of many of its properties, at the third annual ...

Fossil specimen reveals a new species of ancient river dolphin

September 1, 2015

The careful examination of fossil fragments from Panama has led Smithsonian scientists and colleagues to the discovery of a new genus and species of river dolphin that has been long extinct. The team named it Isthminia panamensis. ...

Distant planet's interior chemistry may differ from our own

September 1, 2015

As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their chemistry could differ from that found on Earth. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.