# New twist in classical mechanics finds way around 225-year-old paradox

##### March 2, 2006

In the rarefied sphere of classical mechanics, more can sometimes be elegantly less.
In a paper that will be published March 1 in the proceedings of the Royal Society, two engineers at the Viterbi School of Engineering offer a new and potentially much more flexible method of mathematically describing mechanical systems.

The method also resolves a more than 200-year-old mathematical paradox, according to Professor Firdaus Udwadia, who co-wrote the paper with his former PhD student Phailaung Phomosiri.

The paradox and the problem both come from classic work of the French physicist Joseph Louis Lagrange (1736-1813) who in 1788 described a new mathematical way to represent the movement of systems of connected mechanical parts ("constrained mechanical systems"), one simpler than that originally devised by Newton a century before.

Udwadia gives a simple example of such a system: a double pendulum, a weight hanging on a link, with a second weight attached to tit by another link.

The angle of the first weight's link from the vertical, the length of the that link; the angle and length of the second link, plus the masses of the weights all combine into a mathematical matrix, which when solved using classic Lagrange/Gauss methods, describe the system. But the calculations can be formidably complex.

Udwadia's new method involves omitting the linkage that makes one system of two, representing the parts of the system with a set of coordinates representing first, their position in space, omitting the linkage.

Udwadia says this description can then be considerably simplified if a single system is then decomposed into two or more separate ones. "You can ignore the link connecting weight 1 and weight 2, and just track weight 2 as a mass moving through space."

"You need more coordinates to describe the system as two separate ones instead of one," he continues. But more is less: "the calculations for the two separate systems themselves become much simpler."

Udwadia said that the difficulty with this method comes in mathematically reintroducing the missing link or links. The information necessary to meld the multiple systems back together into one is present, but reconstructing it in many cases leads to a mathematical dead end called a "singular mass matrix."

Such matrices have been known since the time of Lagrange: classically, you get one if you have an element in your machine that you say has zero mass. "Theoretically, it shouldn't affect the system at all," says Udwadia, "but the mathematical effect is that the Lagrangian framework goes into a tail spin, and cannot be used."

Lagrangian matrices are used in quantum mechanics as well as classical mechanics, and in 1964, quantum physicist Paul Dirac made a breakthrough. While studying constrained motion in quantum systems he discovered that in certain cases - in systems called Hamiltonians - he found a way to find correct equations of motion even though the matrices were singular.

Udwadia and Phomosiri also found a way around, though they obtained their equations of motion by a method completely different than Dirac's. They state in their paper that "the general, explicit equation of motion obtained in this paper that is applicable to systems with singular mass matrices with general, holonomic and nonholonomic constraints that may or may not be ideal, appears to be first of a kind in classical mechanics."

The authors add that "these equations, permit one to decompose complex multi-body systems into subsystems .. and then recombine these subsystem equations to obtain the equations of motion of the composite system in a straightforward and simple manner." Other areas of application may appear.

"Where other researchers will take this fundamental equation, is difficult to say," says Udwadia.

Udwadia is a professor in the USC Viterbi School departments of Civil and Environmental Engineering and Aerospace and Mechanical as well as holding appointments in Mathematics in the College, and in Information and Systems Management in the USC Marshall School of Business.

He has been pursuing work on Langrangian mechanics for more than a decade. In 1992, he and collaborator Robert Kalaba introduced an extension of Lagrange's work to non-holonomic systems. In 2001, Udwadia and Kalaba introduced a new way of dealing with problems of unconstrained motion.

Source: University of Southern California

## Recommended for you

#### NASA's space-station resupply missions to relaunch

November 29, 2015

NASA's commercial space program returns to flight this week as one of its private cargo haulers, Orbital ATK, is to launch its first supply shipment to the International Space Station in more than 13 months.

#### Many smaller animals clean themselves to survive, study finds

November 29, 2015

Going without a shower for a few days might make you feel gross, but for small animals like bees and houseflies, keeping clean is a matter of life or death.

#### Sociologist suggests corporate disinformation at root of climate change polarization

November 24, 2015

(Phys.org)â€”Justin Farrell, a sociologist with the School of Forestry & Environmental Studies at Yale University, has conducted a study looking into the question of why there is so much polarity regarding the opinions of ...

#### CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

#### 2015 set to be hottest year on record: UN (Update)

November 25, 2015

The year 2015 is shaping up to be the hottest on record, the UN's weather agency said Wednesday, a week ahead of a crucial climate change summit in Paris.

#### Research reveals the reality of runaway ice loss in Antarctica

November 28, 2015

By studying rocks at different elevations beside the East Antarctic Ice Sheet (EAIS), the team concluded that a period of rapid glacier thinning occurred in the recent geological past, and persisted for several centuries.

## 0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.