Undercover Tactics

May 10, 2005

Soft shell, hard core: nanotubes made of cyclic peptides with a synthetic polymer coating

Ever since the discovery of carbon nanotubes in the early 1990s, scientists and engineers have been fascinated by the possibilities for these little tubes made of organic materials in the fields of microelectronics, substance separation, and biomedicine. Freiburg researchers have now produced novel nanotube hybrids from peptides and polymers: nanotubes made of cyclic peptides are coated with a soft polymeric plastic shell.

Cyclic peptides are small molecules whose amino acid chains form a ring. The amino and acid groups, as well as the hydrogen atom can be arranged in two ways around the first carbon atom (known as the "alpha C-atom") of an amino acid. This allows the molecule to have either a "left" or a "right" configuration. While mother nature uses almost exclusively "left" amino acids in proteins, the team headed by Markus Bieslaski at IMTEK (Institute of Microsystem Technology) are building up cyclic peptides according to the "one right, one left" scheme, a technique that has been pioneered by Reza Ghadiri (Scripps Institute, San Diego). Such peptide rings organize themselves into a tiny tubular structure. All of the peptide side chains stick out of the
tube, leaving a cavity inside. The dimensions of the tube are determined by the number of amino acid building blocks in the peptide rings.

The special trick in this case is that some of the side chains selected are of a type that can act as starting
points for the growth of artificial polymer chains. They can thus form a strongly bound shell of soft plastic around the relatively hard peptide nanotube. In their initial experiments, the researchers used N-isopropylacrylamide as the molecular building block for the polymer. Images obtained with an atomic force microscope revealed solvent-free ("dry") individual rod-shaped objects about 80 nm long and 12 nm high.

The plastic used is not toxic and has interesting physical properties. In a certain temperature range, the polymer matrix collapses. This property could be useful in biomedicine, for drug transport, as an example: an enclosed drug could be released at a specific target in the body. Numerous other applications can also be imagined for these hybrid materials.

This new principle is very versatile: "By varying the type of polymer, the density of attachment points, and the chain length, we are able to produce hybrid nanotubes with tunable properties," says Biesalski. "We are now carrying out systematic studies to this end in our laboratory."

Source: John Wiley & Sons, Inc.

Explore further: Survival of the fittest in materials discovery

Related Stories

Survival of the fittest in materials discovery

October 4, 2016

Research led by Rein Ulijn, Director of the CUNY Advanced Science Research Center (ASRC)'s Nanoscience Initiative and Professor of Chemistry at Hunter College, has paved the way for the development of dynamically-evolving ...

Imaging cellular interiors using polymeric nanoparticles

November 1, 2016

Nanoparticles are particles that are smaller than 100 nanometers. They are typically obtained from metals and, because of their tiny size, have unique properties that make them useful for biomedical applications. However, ...

Click and declick of amine and thiol coupling reaction

September 26, 2016

(Phys.org)—A group of researchers from the University of Texas have developed a sequential, two-step amine and thiol coupling reaction via click chemistry using a derivative of Meldrum's acid. This reaction is reversible ...

'Spaghetti' scaffolding could help grow skin in labs

October 16, 2009

Scientists are developing new scaffolding technology which could be used to grow tissues such as skin, nerves and cartilage using 3D spaghetti-like structures. Their research is highlighted in the latest issue of Business, ...

Brushing up peptides boosts their potential as drugs

November 16, 2015

Peptides promise to be useful drugs, but they're hard to handle. Because peptides, like proteins, are chains of amino acids, our bodies will digest them and excrete the remnants. Even if delivered to their targets intact ...

Slow-release 'jelly' delivers peptide drugs better

January 28, 2013

Duke University biomedical engineers have developed a new delivery system that overcomes the shortcomings of a promising class of peptide drugs – very small proteins – for treating diseases such as diabetes and cancer.

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.