Cas3: a biological fishing rod and a shredder rolled into one

CRISPR-Cas9 has made gene editing a lot easier, and will eventually contribute to elimination of hereditary diseases from our DNA. But despite the fact that researchers use CRISPR-Cas9 and similar bacterial immune systems ...

Lighting up DNA-based nanostructures

Biophysicists from Ludwig-Maximilians-Universitaet (LMU) in Munich have used a new variant of super-resolution microscopy to visualize all the strands of a DNA-based nanostructure for the first time. The method promises to ...

Using gold particles to make the invisible visible

Gold nanoparticles give us a better understanding of enzymes and other molecules. Biswajit Pradhan, Ph.D. candidate at the Leiden Institute of Physics, uses gold nanorods to study individual molecules that would be challenging ...

How Earth's earliest lifeforms protected their genes

Think your life is hard? Imagine being a tiny bacterium trying to get a foothold on a young and desolate Earth. The earliest lifeforms on our planet endured searing heat, ultraviolet radiation and an atmosphere devoid of ...

What is CRISPR gene editing, and how does it work?

You've probably read stories about new research using the gene editing technique CRISPR, also called CRISPR/Cas9. The scientific world is captivated by this revolutionary technology, since it is easier, cheaper and more efficient ...

Two items of music anthology now stored for eternity in DNA

Thanks to an innovative technology for encoding data in DNA strands, two items of world heritage – songs recorded at the Montreux Jazz Festival and digitized by EPFL – have been safeguarded for eternity. This marks the ...

Storing data in DNA brings nature into the digital universe

Humanity is producing data at an unimaginable rate, to the point that storage technologies can't keep up. Every five years, the amount of data we're producing increases 10-fold, including photos and videos. Not all of it ...

page 38 from 40