Travel through wormholes is possible, but slow

A Harvard physicist has shown that wormholes can exist: tunnels in curved space-time, connecting two distant places, through which travel is possible.

Quantum entanglement realized between distant large objects

A team of researchers at the Niels Bohr Institute, University of Copenhagen, have succeeded in entangling two very different quantum objects. The result has several potential applications in ultra-precise sensing and quantum ...

Atoms can be in two places at the same time

Can a penalty kick simultaneously score a goal and miss? For very small objects, at least, this is possible: according to the predictions of quantum mechanics, microscopic objects can take different paths at the same time.  ...

A riddle for our time

One of the most remarkable successes of astrophysics in the last century was its discovery that the age of the universe as measured by its oldest stars was about the same as the age estimated in an entirely different way, ...

New derivation of pi links quantum physics and pure math

In 1655 the English mathematician John Wallis published a book in which he derived a formula for pi as the product of an infinite series of ratios. Now researchers from the University of Rochester, in a surprise discovery, ...

How spacetime is built by quantum entanglement

A collaboration of physicists and a mathematician has made a significant step toward unifying general relativity and quantum mechanics by explaining how spacetime emerges from quantum entanglement in a more fundamental theory. ...

Einstein's description of gravity just got much harder to beat

Einstein's theory of general relativity—the idea that gravity is matter warping spacetime—has withstood over 100 years of scrutiny and testing, including the newest test from the Event Horizon Telescope collaboration, ...

page 2 from 40