An elastomer that behaves like an artificial muscle

(Phys.org)—Animal muscle needs to be strong enough to endure strain; it must also be flexible and elastic; and it is self-healing. Finding a polymer that has all of these properties has proved challenging. However, researchers ...

Sculpting a conjugated polymer using DNA origami

(Phys.org)—New research allows scientists to sculpt polymers into two- and three-dimensional shapes, similar to how polypeptides fold into functional three-dimensional shapes. This ability is particularly advantageous for ...

DNA design brings predictability to polymer gels

Scientists in Japan have made a tuneable, elastic and temperature-sensitive gel by using complementary DNA strands to connect star-shaped polymer molecules together. The gel, and the method used to develop it, could lead ...

A record-long polymer DNA negative

A fragment of a single strand of DNA, built of the nucleobases cytosine and guanine, can be imprinted in a polymer—this has been shown by chemists from Warsaw, Denton and Milan. The resulting artificial negative, with a ...

Tests show 'crystalsome' nanoparticle lasts longer in bloodstream

Selecting the right packaging to get precious cargo from point A to point B can be a daunting task at the post office. For some time, scientists have wrestled with a similar set of questions when packaging medicine for delivery ...

Using DNA strands to design new polymer materials

McGill University researchers have chemically imprinted polymer particles with DNA strands - a technique that could lead to new materials for applications ranging from biomedicine to the promising field of "soft robotics."

page 1 from 2