Scientists discover mechanisms behind thermoelectric material

Recently, a research group led by Prof. Zhang Yongsheng from the Institute of Solid State Physics, Hefei Institutes of Physical Science successfully explained the novel physical mechanisms behind pyrite-type ZnSe2.

Surface waves can help nanostructured devices keep their cool

Due to the continuing progress in miniaturization of silicon microelectronic and photonic devices, the cooling of device structures is increasingly challenging. Conventional heat transport in bulk materials is dominated by ...

Anti-resonant hollow-core optical fiber reduces 'noise'

A new hollow optical fiber greatly reduces the "noise" interfering with the signals it transmits compared to the single-mode fibers now widely used, researchers at the University of Rochester report.

Hammer-on technique for atomic vibrations in a crystal

Vibrations of atoms in a crystal of the semiconductor gallium arsenide (GaAs) are impulsively shifted to a higher frequency by an optically excited electric current. The related change in the spatial distribution of charge ...

New techniques improve quantum communication, entangle phonons

Quantum communication—where information is sent through particles, typically entangled photons—has the potential to become the ultimate secure communication channel. Not only is it nearly impossible to eavesdrop on quantum ...

A nice day for a quantum walk

Researchers at the Center for Quantum Information and Quantum Biology at Osaka University used trapped ions to demonstrate the spreading of vibrational quanta as part of a quantum random walk. This work relies on their exquisite ...

New theory could change the design of future spintronic circuits

The flow of electric charge lies at the heart of electronic circuits. However, electrons also have spin, and flows of electron spin play a vital role in spintronic circuits. These could be essential for our future computing ...

page 1 from 11