Reactive optical matter: Light-induced motion

Newton's third law dictates that forces between interacting particles are equal and opposite for closed systems. In a non-equilibrium environment, the third law can be defied, giving rise to "nonreciprocal" forces. Theoretically, ...

Breakthrough with light could help viral research

(PhysOrg.com) -- Researchers have developed a method using the force of light to gently trap, manipulate and study tiny, active objects as miniscule as viruses -- opening doors to expanded viral research.

New antimatter method to provide 'a major experimental advantage'

(Phys.org)—Researchers have proposed a method for cooling trapped antihydrogen which they believe could provide 'a major experimental advantage' and help to map the mysterious properties of antimatter that have to date ...

Quantum Walk in Laboratory

A team of physicists headed by Christian Roos and Rainer Blatt from the Institute of Quantum Optics and Quantum Information of the Austrian Academy of Sciences realize a quantum walk in a quantum system with up to 23 steps. ...

Trapping giant Rydberg atoms for faster quantum computers

In an achievement that could help enable fast quantum computers, University of Michigan physicists have built a better Rydberg atom trap. Rydberg atoms are highly excited, nearly-ionized giants that can be thousands of times ...

First entanglement between light and optical atomic coherence

Using clouds of ultra-cold atoms and a pair of lasers operating at optical wavelengths, researchers have reached a quantum network milestone: entangling light with an optical atomic coherence composed of interacting atoms ...

page 2 from 6