When memory qubits and photons get entangled

Encrypting data in a way that ensures secure communication is an ever-growing challenge because crucial components of today's encryption systems cannot withstand future quantum computers. Researchers around the world are ...

A better way to measure acceleration

You're going at the speed limit down a two-lane road when a car barrels out of a driveway on your right. You slam on the brakes, and within a fraction of a second of the impact an airbag inflates, saving you from serious ...

Record-breaking, floating laser resonator

Physical Review X recently reported on a new optical resonator from the Technion—Israel Institute of Technology that is unprecedented in resonance enhancement. Developed by graduate student Jacob Kher-Alden under the supervision ...

Using noise to enhance optical sensing

In conventional sensing methods, noise is always a problem, especially in systems that are meant to detect changes in their environment that are hardly bigger or even smaller than the noise in the system. Encountering this ...

Colloidal quantum dot laser diodes are just around the corner

Los Alamos scientists have incorporated meticulously engineered colloidal quantum dots into a new type of light emitting diodes (LEDs) containing an integrated optical resonator, which allows them to function as lasers. These ...

Tunable optical chip paves way for new quantum devices

Researchers have created a silicon carbide (SiC) photonic integrated chip that can be thermally tuned by applying an electric signal. The approach could one day be used to create a large range of reconfigurable devices such ...

Solving problems on a quantum chessboard

Physicists at the University of Innsbruck are proposing a new model that could demonstrate the supremacy of quantum computers over classical supercomputers in solving optimization problems. In a recent paper, they demonstrate ...

page 4 from 10