Scientists discover new ways to twist and shift light

January 14, 2019, National Physical Laboratory
Credit: CC0 Public Domain

The results from the National Physical Laboratory's (NPL) latest research in photonics could open doors to new quantum technologies and telecoms systems

Researchers from the National Physical Laboratory (NPL) have revealed unusual qualities in that could lead the way to entirely new electronic devices and applications. Light is used extensively in electronics for telecommunications and computing. Optical fibres are just one common example of how light is used to facilitate telephone calls and internet connections across the globe.

As outlined today in Physical Review Letters, NPL researchers investigated how light can be controlled in an optical ring resonator, a tiny device that can store extremely high light intensities. Just as certain 'whispers' can travel around a whispering gallery and be heard the other side, in an optical ring resonator wavelengths of light resonate around the device.

The first-of-its-kind study uses optical ring resonators to identify the interplay of two types of spontaneous symmetry breaking. By analysing how the time between pulses of light varied and how the light is polarised, the team has been able reveal new ways to manipulate light.

For instance, usually light will obey what is known as 'time reversal symmetry', meaning that if time is reversed, light should travel back to its origin. However, as this research shows, at high light intensities this symmetry is broken within optical ring resonators.

Francois Copie, scientist on the project explains: "When seeding the ring resonator with short pulses, the circulating pulses within the will either arrive before or after the seed but never at the same time."

As a potential application, this could be used to combine and rearrange optical pulses e.g. in telecommunication networks.

The research also showed that light can spontaneously change its polarisation in ring resonators. This is as if a guitar string was initially plucked in the vertical direction but suddenly starts to vibrate either in a clockwise or an anticlockwise circular motion.

This has not only improved our understanding of nonlinear dynamics in photonics, helping to guide the development of better optical ring resonators for future applications (such as in for precise time-keeping) but will help scientists to better understand how we can manipulate light in photonic circuits in sensors and quantum technologies.

Pascal Del'Haye, Senior Research Scientist, National Physical Laboratory (NPL) said: "Optics have become an important part of our telecoms networks and computing systems. Understanding how we can manipulate light in photonic circuits will help to unlock a whole host of new technologies, including better sensors and new quantum capabilities, which will become ever more important in our everyday lives."

Explore further: Scientists create diodes made of light

More information: François Copie et al. Interplay of Polarization and Time-Reversal Symmetry Breaking in Synchronously Pumped Ring Resonators, Physical Review Letters (2019). DOI: 10.1103/PhysRevLett.122.013905

Related Stories

Scientists create diodes made of light

March 16, 2018

Photonics researchers at the National Physical Laboratory (NPL) have achieved the extra-ordinary by creating a diode consisting of light that can be used, for the first time, in miniaturised photonic circuits, as published ...

Electronically programmable photonic molecule

December 21, 2018

Physical systems with discrete energy levels are ubiquitous in nature and form fundamental building blocks of quantum technology. Artificial atom-like and molecule-like systems were previously demonstrated to regulate light ...

Recommended for you

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.