Asteroids, hydrogen make great recipe for life on Mars

A new study reveals asteroid impacts on ancient Mars could have produced key ingredients for life if the Martian atmosphere was rich in hydrogen. An early hydrogen-rich atmosphere on Mars could also explain how the planet ...

Subtlety and the selective art of separating lanthanides

Lanthanide elements are essential parts of today's high-tech commodities including flat-screen TVs, cell phones, electric cars, and satellites. While the demand for these elements is high, separating lanthanides from impurities ...

How drought and other extremes impact water pollution

One in 10 Americans depends on the Colorado River for bathing and drinking. Last fall's record-high temperatures reduced Colorado snowpack in winter 2018 to 66 percent of normal, sparking concern over water shortages downstream ...

Boxing up ag field nitrogen

Spring in America's heartland is often wet. That makes its soil too soft for planting. One solution to that issue is tile drainage. Growers insert a series of pipes (drain tiles) under their fields, which drains water from ...

Researchers report nitrate respiration of an enteropathogen

The human pathogen Vibrio cholerae has stumped scientists since its discovery 150 years ago. Experts who studied the bacterium were puzzled that the bacterium was unable to grow under anaerobic conditions although it was ...

page 1 from 13

Nitrate

The nitrate ion is a polyatomic ion with the molecular formula NO− 3 and a molecular mass of 62.0049 g/mol. It is the conjugate base of nitric acid, consisting of one central nitrogen atom surrounded by three identically-bonded oxygen atoms in a trigonal planar arrangement. The nitrate ion carries a formal charge of -1. This results from a combination formal charge in which each of the three oxygens carries a −2⁄3 charge, whereas the nitrogen carries a +1 charge, all these adding up to formal charge of the polyatomic nitrate ion.

This arrangement is commonly used as an example of resonance. Like the isoelectronic carbonate ion, the nitrate ion can be represented by resonance structures:

Almost all inorganic nitrate salts are soluble in water at standard temperature and pressure. A common example of an inorganic nitrate salt is potassium nitrate (saltpetre).

In organic chemistry a nitrate (not to be confused with nitro) is a functional group with general chemical formula RONO2 where R stands for any organic residue. They are the esters of nitric acid and alcohols formed by nitroxylation. Examples are methyl nitrate formed by reaction of methanol and nitric acid, the nitrate of tartaric acid, and the inaccurately-named nitroglycerin (which is actually an organic nitrate compound, not a nitro compound).

Like organic nitro compounds (see below) both organic and inorganic nitrates can be used as propellants and explosives. An example of the use of inorganic nitrate was classical gunpowder. In all these uses the thermal decomposition of the nitrate yields molecular nitrogen N2 gas plus considerable chemical energy, due to the high strength of the bond in molecular nitrogen. Especially in inorganic nitrate reactions, oxidation from the nitrate oxygens is also an important energy-releasing process.

This text uses material from Wikipedia, licensed under CC BY-SA