Graphene-nanotube hybrid boosts lithium metal batteries

Rice University scientists have created a rechargeable lithium metal battery with three times the capacity of commercial lithium-ion batteries by resolving something that has long stumped researchers: the dendrite problem.

Dendrite-free lithium metal anodes using N-doped graphene matrix

Recently, Researchers in Tsinghua University have proposed a nitrogen-doped graphene matrix with densely and uniformly distributed lithiophilic functional groups for dendrite-free lithium metal anodes, appearing in the journal ...

Technique to suppress dendrite growth in lithium metal batteries

A team of researchers at Tsinghua University (Beijing, China) has reported an implantable solid electrolyte interphase (SEI) in a lithium metal anode. This stable SEI film can suppress lithium dendrite growth to realize safe ...

Safe lithium-metal batteries with graphene

Recently, researchers at Tsinghua University, China have proposed a graphene-based nanostructured lithium metal anode for lithium metal batteries to inhibit dendrite growth and improve electrochemistry performance. They report ...

Solid electrolyte interphases on lithium metal anode

The prestigious Advanced Science journal has just published a review paper on solid electrolyte interphases of lithium metal anodes contributed by Prof. Qiang Zhang in Tsinghua University, China and Ji-Guang Zhang in Pacific ...

Study paves way for larger, safer lithium ion batteries

(Phys.org)—Looking toward improved batteries for charging electric cars and storing energy from renewable but intermittent solar and wind, scientists at Oak Ridge National Laboratory have developed the first high-performance, ...

Komaba Group reports sodium ion battery progress

(Phys.org)—Scientists with a common goal, to figure out an alternative to the lithium ion battery, the main power source of choice, are not giving up. The quarrel is not with the lithium ion battery's performance but in ...

page 3 from 3