Searching for new asymmetry between matter and antimatter

Once a particle of matter, always a particle of matter. Or not. Thanks to a quirk of quantum physics, four known particles made up of two different quarks—such as the electrically neutral D meson composed of a charm quark ...

Cosmic inflation: Higgs says goodbye to his 'little brother'

In the first moments after the Big Bang, the universe expanded many billions of times faster than today. Such rapid expansion is likely due to a primordial force field acting with a new particle, the inflaton. From the latest ...

LHCb experiment observes new matter-antimatter difference

(Phys.org) —The LHCb collaboration at CERN today submitted a paper to Physical Review Letters on the first observation of matter-antimatter asymmetry in the decays of the particle known as the B0s. It is only the fourth ...

CERN's LHCb experiment takes precision physics to a new level

(PhysOrg.com) -- Results presented by CERN1's LHCb experiment at the biennial Lepton-Photon conference in Mumbai, India on Saturday 27 August are becoming the most precise yet on particles called B mesons, which provide a ...

LHCb experiment squeezes the space for expected new physics

(PhysOrg.com) -- Results presented by the LHCb collaboration this evening at the annual ‘Rencontres de Moriond’ conference, held this year in La Thuile, Italy, have put one of the most stringent limits to date on ...

How are hadrons born at the huge energies available in the LHC?

Our world consists mainly of particles built up of three quarks bound by gluons. The process of the sticking together of quarks, called hadronisation, is still poorly understood. Physicists from the Institute of Nuclear Physics ...

LHCb explores the beauty of lepton universality

The LHCb collaboration has reported an intriguing new result in its quest to test a key principle of the Standard Model called lepton universality. Although not statistically significant, the finding—a possible difference ...

First studies with Quantum Machine Learning at LHCb

The LHCb experiment at CERN recently announced the first proton-proton collisions at a world-record energy with its brand-new detector designed to cope with much more demanding data-taking conditions.

Charmonium surprise at LHCb

Today, the LHCb experiment at CERN presented a measurement of the masses of two particular particles with a precision that is unprecedented at a hadron collider for this type of particles. Until now, the precise study of ...

Long live the doubly charmed particle

Finding a new particle is always a nice surprise, but measuring its characteristics is another story and just as important. Less than a year after announcing the discovery of the particle going by the snappy name of Ξcc++ (Xicc++), ...

page 3 from 5