CERN's LHCb experiment takes precision physics to a new level

(PhysOrg.com) -- Results presented by CERN1's LHCb experiment at the biennial Lepton-Photon conference in Mumbai, India on Saturday 27 August are becoming the most precise yet on particles called B mesons, which provide a way to investigate matter-antimatter asymmetry.

The LHCb experiment studies this phenomenon by observing the way B mesons decay into other particles. The new results reinforce earlier from LHCb presented at last month’s European Physical Society conference in Grenoble, France, showing that the B meson decays so far measured by the collaboration are in full agreement with predictions from the Standard Model of particle physics, the theory physicists use to describe the behaviour of fundamental particles.

“This result shows that we’re now able to measure the finest details of the B meson system,” said LHCb spokesperson Pierluigi Campana, “which puts us right where we need to be to start finding cracks in the Standard Model, and explaining matter-antimatter .”

Matter and antimatter are thought to have existed in equal amounts at the beginning of the universe, but as the universe expanded and cooled, an asymmetry developed between them, leaving a universe that appears to be composed entirely of matter. Heavy quarks provide a good place to investigate this because the heavier the quark, the more ways it can decay, and all of these decays are described by the Standard Model. The Standard Model predicts matter-antimatter asymmetry, but at a level which is too small to explain the observed asymmetry in the Universe. Deviations from the predictions would bring an indication of new physics. B-quarks are produced copiously at the LHC, which makes them the particle of choice for studying matter-antimatter asymmetry in the laboratory. Quarks are never produced alone, but always travel in company: they are accompanied by another quark giving rise to the family of called B mesons. It is these that LHCb studies.

Earlier in the year, experiments at Fermilab presented results that hinted at a divergence from the Standard Model. Since then, however, the LHCb experiment has surpassed the Fermilab experiments’ precision, and sees no such divergence.

“These results suggest that the devil is in the detail,” said Campana, “and we’ve reached the point where we’re getting right down into the details. It’s not the devil we expect to find there, though, but new hints of deviations from the .”

LHCb has been able to reach this level of precision so early in the operational lifetime of the LHC thanks to the excellent performance of the LHC, and the way that LHCb scientists have worked with LHC engineers to optimize the amount of data collected by the experiment. Unlike the large general-purpose detectors, ATLAS and CMS, the LHCb detector has not been constructed to record data at the maximum rate the LHC can deliver. LHCb contains very sensitive elements close to the beam that can measure the point of decay of B mesons. Reconciling the need to protect these devices from possible beam damage with maximizing beam intensity is the challenge these engineers and scientists have overcome.

“Collaboration with the accelerator people has been fantastic,” said Campana, “It’s allowing us to collect data much faster than expected, and bringing us closer to being able to understand where the went.”


Explore further

Physicists first to observe rare particles produced at the Large Hadron Collider

More information: www.quantumdiaries.org/2011/08 … -the-standard-model/
Provided by CERN
Citation: CERN's LHCb experiment takes precision physics to a new level (2011, August 29) retrieved 17 August 2019 from https://phys.org/news/2011-08-cern-lhcb-precision-physics.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Aug 30, 2011
that the B meson decays so far measured by the collaboration are in full agreement with predictions from the Standard Model of particle physics...( which) predicts matter-antimatter asymmetry, but at a level which is too small to explain the observed asymmetry in the Universe
Briefly speaking, they found nothing - after all, as usually at the LHC. But the negative result is a result too in this case.

Aug 30, 2011
I wanted a black hole... but a fundamental flaw in the standard model will work too. I would love to play beam me up Scotty at one of the junctions(involves forcing coworkers to say Uncle.)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more