Related topics: carbon dioxide

Stressed plants must have iron under control

When land plants' nutrient availability dwindles, they have to respond to this stress. Plant researchers at Heinrich Heine University Düsseldorf (HHU) have used available data to examine which genes plants activate in the ...

Interstellar iron isn't missing, it's just hiding in plain sight

Astrophysicists know that iron (chemical symbol: Fe) is one of the most abundant elements in the universe, after lightweight elements such as hydrogen, carbon, and oxygen. Iron is most commonly found in gaseous form in stars ...

Charge transfer within transition-metal dyes analysed

Transition-metal complexes in dye-based solar cells are responsible for converting light into electrical energy. A model of spatial charge separation within the molecule has been used to describe this conversion. However, ...

page 1 from 23

Iron

Iron (pronounced /ˈаɪ.ərn/) is a chemical element with the symbol Fe (Latin: ferrum) and atomic number 26. Iron is a group 8 and period 4 element. Iron and iron alloys (steels) are by far the most common metals and the most common ferromagnetic materials in everyday use. Fresh iron surfaces are lustrous and silvery-grey in colour, but oxidise in air to form a red or brown coating of ferrous oxide or rust. Pure single crystals of iron are soft (softer than aluminium), and the addition of minute amounts of impurities, such as carbon, significantly strengthens them. Alloying iron with appropriate small amounts (up to a few per cent) of other metals and carbon produces steel, which can be 1,000 times harder than pure iron.

Iron-56 is the heaviest stable isotope produced by the alpha process in stellar nucleosynthesis; heavier elements than iron and nickel require a supernova for their formation. Iron is the most abundant element in the core of red giants, and is the most abundant metal in iron meteorites and in the dense metal cores of planets such as Earth.

This text uses material from Wikipedia, licensed under CC BY-SA