How are hadrons born at the huge energies available in the LHC?

Our world consists mainly of particles built up of three quarks bound by gluons. The process of the sticking together of quarks, called hadronisation, is still poorly understood. Physicists from the Institute of Nuclear Physics ...

Properties of subatomic 'soup' that mimics the early universe

By teasing out signatures of particles that decay just tenths of a millimeter from the center of a trillion-degree fireball that mimics the early universe, nuclear physicists smashing atoms at the Relativistic Heavy Ion Collider ...

New CERN results show novel phenomena in proton collisions

In a paper published today in Nature Physics , the ALICE collaboration reports that proton collisions sometimes present similar patterns to those observed in the collisions of heavy nuclei. This behaviour was spotted through ...

The universe's primordial soup flowing at CERN

Researchers have recreated the universe's primordial soup in miniature format by colliding lead atoms with extremely high energy in the 27 km long particle accelerator, the LHC at CERN in Geneva. The primordial soup is a ...

Tiny drops of early universe 'perfect' fluid

The Relativistic Heavy Ion Collider (RHIC), a particle collider for nuclear physics research at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, smashes large nuclei together at close to the speed of ...

page 8 from 15