The LHC lead-ion collision run starts

The LHC is back delivering collisions to the experiments after the successful leak repair in August. But instead of protons, it is now the turn of lead ion beams to collide, marking the first heavy-ion run in five years.

New driver for shapes of small quark-gluon plasma drops?

New measurements of how particles flow from collisions of different types of particles at the Relativistic Heavy Ion Collider (RHIC) have provided new insights into the origin of the shape of hot specks of matter generated ...

Calculation shows why heavy quarks get caught up in the flow

Using some of the world's most powerful supercomputers, a group of theorists has produced a major advance in the field of nuclear physics—a calculation of the "heavy quark diffusion coefficient." This number describes how ...

page 1 from 14


Gluons (pronounced /ˈɡluːɒnz/; from English glue) are elementary particles which act as the exchange particles (or gauge bosons) for the color force between quarks, analogous to the exchange of photons in the electromagnetic force between two charged particles.

Since quarks make up the baryons, and the strong interaction takes place between baryons, one could say that the color force is the source of the strong interaction, or that the strong interaction is like a residual color force which extends beyond the baryons, for example when protons and neutrons are bound together in a nucleus.

In technical terms, they are vector gauge bosons that mediate strong interactions of quarks in quantum chromodynamics (QCD). Unlike the electrically neutral photon of quantum electrodynamics (QED), gluons themselves carry color charge and therefore participate in the strong interaction in addition to mediating it, making QCD significantly harder to analyze than QED.

This text uses material from Wikipedia, licensed under CC BY-SA