Blueprint for a robust quantum future

Claiming that something has a defect normally suggests an undesirable feature. That's not the case in solid-state systems, such as the semiconductors at the heart of modern classical electronic devices. They work because ...

Solar cells: Losses made visible on the nanoscale

Solar cells made of crystalline silicon achieve peak efficiencies, especially in combination with selective contacts made of amorphous silicon (a-Si:H). However, their efficiency is limited by losses in these contact layers. ...

Twisting, flexible crystals key to solar energy production

Researchers at Duke University have revealed long-hidden molecular dynamics that provide desirable properties for solar energy and heat energy applications to an exciting class of materials called halide perovskites.

Locked MOFs are the key to high porosity

A highly porous metal organic framework, assembled from molecular building blocks designed to lock together in a specific orientation, has been developed by researchers at KAUST.

Plant-based magnetic nanoparticles with antifungal properties

A team of researchers from Immanuel Kant Baltic Federal University obtained magnetic nanoparticles using sweet flag (Acorus calamus). Both the roots and the leaves of this plant have antioxidant, antimicrobial, and insecticide ...

page 9 from 40