Related topics: particles · cern · physicists · higgs boson

Crunching multiverse to solve two physics puzzles at once

The discovery of the Higgs boson was a landmark in the history of physics. It explained something fundamental: how elementary particles that have mass get their masses. But it also marked something no less fundamental: the ...

CMS collaboration homes in on Higgs boson's lifetime

The Higgs boson doesn't stick around for long. Once it is created in particle collisions, the famed particle lives for a mere less than a trillionth of a billionth of a second or, more precisely, 1.6 x 10-22 seconds. According ...

Mysterious clouds could offer new clues on dark matter

The hunt for gravitational waves, ripples in space and time caused by major cosmic cataclysms, could help solve one of the Universe's other burning mysteries—boson clouds and whether they are a leading contender for dark ...

ATLAS reports first observation of WWW production

The ATLAS Collaboration at CERN announces the first observation of "WWW production": The simultaneous creation of three massive W bosons in high-energy Large Hadron Collider (LHC) collisions.

Search for heavy bosons sets new limits

Since discovering the Higgs boson in 2012, the ATLAS Collaboration at CERN has been working to understand its properties. One question in particular stands out: why does the Higgs boson have the mass that it does? Experiments ...

Searching for heavy new particles with the ATLAS Experiment

Since discovering the Higgs boson in 2012, the ATLAS Collaboration at CERN has been working to understand its properties. One question in particular stands out: why does the Higgs boson have the mass that it does? Experiments ...

ATLAS experiment searches for 'charming' decay of the Higgs boson

Key to understanding the Higgs boson and its role in the Standard Model is understanding how it interacts with matter particles, i.e. quarks and leptons. There are three generations of matter particles, varying in mass from ...

Deeper insight into Higgs boson production using W bosons

Discovering the Higgs boson in 2012 was only the start. Physicists immediately began measuring its properties, an investigation that is still ongoing as they try to unravel if the Higgs mechanism is realized in nature as ...

Under the radar: Searching for stealthy supersymmetry

The standard model of particle physics encapsulates our current knowledge of elementary particles and their interactions. The standard model is not complete; for example, it does not describe observations such as gravity, ...

page 1 from 33

Boson

In particle physics, bosons are subatomic particles that obey Bose–Einstein statistics. Several bosons can occupy the same quantum state. The word boson derives from the name of Satyendra Nath Bose.

Bosons contrast with fermions, which obey Fermi–Dirac statistics. Two or more fermions cannot occupy the same quantum state.

Since bosons with the same energy can occupy the same place in space, bosons are often force carrier particles. In contrast, fermions are usually associated with matter (although in quantum physics the distinction between the two concepts is not clear cut).

Bosons may be either elementary, like photons, or composite, like mesons. Some composite bosons do not satisfy the criteria for Bose-Einstein statistics and are not truly bosons (e.g. helium-4 atoms); a more accurate term for such composite particles would be "bosonic-composites".

All observed bosons have integer spin, as opposed to fermions, which have half-integer spin. This is in accordance with the spin-statistics theorem which states that in any reasonable relativistic quantum field theory, particles with integer spin are bosons, while particles with half-integer spin are fermions.

While most bosons are composite particles, in the Standard Model, there are six bosons which are elementary:

Unlike the gauge bosons, the Higgs boson and Graviton have not yet been observed experimentally.

Composite bosons are important in superfluidity and other applications of Bose–Einstein condensates.

This text uses material from Wikipedia, licensed under CC BY-SA