Searching for matter–antimatter asymmetry with the Higgs boson

Symmetries make the world go round, but so do asymmetries. A case in point is an asymmetry known as charge–parity (CP) asymmetry, which is required to explain why matter vastly outnumbers antimatter in the present-day universe ...

Compact Muon Solenoid on the lookout for new physics

With Run 3 of the Large Hadron Collider (LHC) just around the corner, the LHC experiments are still publishing new results based on the previous runs' data. Despite no new discoveries being announced, small deviations from ...

The standard model of particle physics may be broken, expert says

As a physicist working at the Large Hadron Collider (LHC) at Cern, one of the most frequent questions I am asked is "When are you going to find something?" Resisting the temptation to sarcastically reply "Aside from the Higgs ...

Researchers test key neutrino model at the Large Hadron Collider

The CMS collaboration at the Large Hadron Collider (LHC) has carried out a new test on a model that was developed to explain the tiny mass of neutrinos, electrically neutral particles that change type as they travel through ...

Large Hadron Collider restarts after three-year break

The Large Hadron Collider restarted Friday after a three-year break for upgrades that will allow it to smash protons together at even greater speeds, in the hope of making new ground-breaking discoveries.

Could massive gravitons be viable dark matter candidates?

Today, many research teams worldwide are trying to detect dark matter, an invisible substance that is believed to account for most of the matter in the universe. As does not reflect or emit light, its presence has been indirectly ...

page 1 from 32