Related topics: particles · cern · physicists · higgs boson

Plan for Europe's huge new particle collider takes shape

Europe's CERN laboratory revealed more details Monday about its plans for a huge new particle accelerator that would dwarf the Large Hadron Collider (LHC), ramping up efforts to uncover the underlying secrets of the universe.

ATLAS measures strength of the strong force with record precision

Binding together quarks into protons, neutrons and atomic nuclei is a force so strong, it's in the name. The strong force, which is carried by gluon particles, is the strongest of all fundamental forces of nature—the others ...

Looking for sterile neutrinos in the CMS muon system

The CMS collaboration has recently presented new results in searches for long-lived heavy neutral leptons (HNLs). Also known as "sterile neutrinos", HNLs are interesting hypothetical particles that could solve three major ...

ATLAS sets record precision on Higgs boson's mass

In the 11 years since its discovery at the Large Hadron Collider (LHC), the Higgs boson has become a central avenue for shedding light on the fundamental structure of the universe. Precise measurements of the properties of ...

Experiments see first evidence of a rare Higgs boson decay

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in 2012 marked a significant milestone in particle physics. Since then, the ATLAS and CMS collaborations have been diligently investigating the properties ...

This star might be orbiting a strange 'boson star'

A team of astronomers has claimed that observations of a sun-like star orbiting a small black hole might actually be the indication of something far more exotic—the existence of a boson star, a star composed entirely of ...

page 1 from 38

Boson

In particle physics, bosons are subatomic particles that obey Bose–Einstein statistics. Several bosons can occupy the same quantum state. The word boson derives from the name of Satyendra Nath Bose.

Bosons contrast with fermions, which obey Fermi–Dirac statistics. Two or more fermions cannot occupy the same quantum state.

Since bosons with the same energy can occupy the same place in space, bosons are often force carrier particles. In contrast, fermions are usually associated with matter (although in quantum physics the distinction between the two concepts is not clear cut).

Bosons may be either elementary, like photons, or composite, like mesons. Some composite bosons do not satisfy the criteria for Bose-Einstein statistics and are not truly bosons (e.g. helium-4 atoms); a more accurate term for such composite particles would be "bosonic-composites".

All observed bosons have integer spin, as opposed to fermions, which have half-integer spin. This is in accordance with the spin-statistics theorem which states that in any reasonable relativistic quantum field theory, particles with integer spin are bosons, while particles with half-integer spin are fermions.

While most bosons are composite particles, in the Standard Model, there are six bosons which are elementary:

Unlike the gauge bosons, the Higgs boson and Graviton have not yet been observed experimentally.

Composite bosons are important in superfluidity and other applications of Bose–Einstein condensates.

This text uses material from Wikipedia, licensed under CC BY-SA