Related topics: physical activity

Speeding algorithms by shrinking data

In computer science, the buzzword of the day is "big data." The proliferation of cheap, Internet-connected sensors—such as the GPS receivers, accelerometers and cameras in smartphones—has meant an explosion of information ...

Two pairs of specs in one: Touch of finger changes prescription

If you're over 45 and wear glasses, you've probably got more than one pair. Or you're using bifocals or progressive lenses. As most people get older, their eyes have more trouble focusing on objects that are close, which ...

US army seeks new technology to replace GPS

The US army is working to limit its dependence on GPS by developing the next generation of navigation technology, including a tiny autonomous chip, the director of the Pentagon's research agency said Wednesday.

Smart sock for baby monitoring in funding campaign

(Phys.org) —Owlet Baby Monitors, a Salt Lake City business, is self-raising funds for its product, Owlet Vitals Monitor, a "smart" sock on the baby that can monitor vital signs and can send the information direct to a smartphone ...

New microtweezers may build tiny 'MEMS' structures

Researchers have created new "microtweezers" capable of manipulating objects to build tiny structures, print coatings to make advanced sensors, and grab and position live stem cell spheres for research.

A better way to measure acceleration

You're going at the speed limit down a two-lane road when a car barrels out of a driveway on your right. You slam on the brakes, and within a fraction of a second of the impact an airbag inflates, saving you from serious ...

page 1 from 12

Accelerometer

An accelerometer is a device that measures proper acceleration, also called the four-acceleration. This is not necessarily the same as the coordinate acceleration (change of velocity of the device in three-dimensional space), but is rather the type of acceleration associated with the phenomenon of weight experienced by a test mass that resides in the frame of reference of the accelerometer device. For an example of where these types of acceleration differ, an accelerometer will measure a value when sitting on the ground, because masses there have weights, even though they do not change velocity. However, an accelerometer in gravitational free fall toward the center of the Earth will measure a value of zero because, even though its speed is increasing, it is in a frame of reference in which it is weightless.

An accelerometer thus measures weight per unit of (test) mass, a quantity of acceleration also known as specific force, or g-force (although it is not a force, and these quantities are badly-named). Another way of stating this is that by measuring weight, an accelerometer measures the acceleration of the free-fall reference frame (inertial reference frame) relative to itself (the accelerometer). This measurable acceleration is not the ordinary acceleration of Newton (in three dimensions), but rather four-acceleration, which is acceleration away from a geodesic path in four-dimensional space-time.

Most accelerometers do not display the value they measure, but supply it to other devices. Real accelerometers also have practical limitations in how quickly they respond to changes in acceleration, and cannot respond to changes above a certain frequency of change.

Single- and multi-axis models of accelerometer are available to detect magnitude and direction of the proper acceleration (or g-force), as a vector quantity, and can be used to sense orientation (because direction of weight changes), coordinate acceleration (so long as it produces g-force or a change in g-force), vibration, shock, and falling (a case where the proper acceleration changes, since it tends toward zero). Micromachined accelerometers are increasingly present in portable electronic devices and video game controllers, to detect the position of the device or provide for game input.

Pairs of accelerometers extended over a region of space can be used to detect differences (gradients) in the proper accelerations of frames of references associated with those points. These devices are called gravity gradiometers, as they measure gradients in the gravitational field. Such pairs of accelerometers in theory may also be able to detect gravitational waves.

This text uses material from Wikipedia, licensed under CC BY-SA