This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

proofread

Harnessing all-dielectric metamaterials to manipulate the polarization state of light

Harnessing all-dielectric metamaterials to manipulate the polarization state of light
Schematic diagram of the structure and polarization conversion effects. Credit: Frontiers of Optoelectronics (2023). DOI: 10.1007/s12200-023-00098-9

Polarization is one of the fundamental characteristics of electromagnetic waves. It can convey valuable vector information in sensitive measurements and signal transmission, which is a promising technology for various fields such as environmental monitoring, biomedical sciences, and marine exploration. Particularly in the terahertz frequency range, traditional device design methods and structures can only achieve limited performance. Designing efficient modulator devices for high-bandwidth terahertz waves presents a significant challenge.

Researchers led by Prof. Liang Wu at Tianjin University (TJU), China, have been conducting experiments in the field of all-dielectric metamaterials, specifically focusing on utilizing these materials and their to achieve effective broadband polarization conversion in the terahertz frequency range.

They propose a cross-shaped microstructure metamaterial for achieving cross-polarization conversion and linear-to-circular polarization conversion in the terahertz frequency range. The study, titled "An all-silicon design of a high-efficiency broadband transmissive terahertz polarization convertor," was published in Frontiers of Optoelectronics.

Within a wide frequency range of 1.00 to 2.32 THz, the average conversion efficiency of cross-linear waves exceeds 80%, with the highest conversion efficiency peak reaching an impressive 99.97%. Additionally, the employed structure facilitates the conversion from linear to , with an ellipticity of 1 at 0.85 THz.

This work by the researchers also provides valuable insights for the design of other metamaterials capable of broadband, high-efficiency, and multi-polarization mode manipulation.

More information: Xiaohua Xing et al, An all-silicon design of a high-efficiency broadband transmissive terahertz polarization convertor, Frontiers of Optoelectronics (2023). DOI: 10.1007/s12200-023-00098-9

Provided by Frontiers Journals

Citation: Harnessing all-dielectric metamaterials to manipulate the polarization state of light (2023, December 27) retrieved 18 April 2024 from https://phys.org/news/2023-12-harnessing-all-dielectric-metamaterials-polarization-state.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Arbitrary polarization conversion dichroism metasurfaces for full Poincaré sphere polarizers

36 shares

Feedback to editors