Creating fast, reliable 3D scans of flora and fauna

3D flora and fauna at your fingertips
3D render of a Luna Lionfish taken with bio-photogrammetry. Credit: Kano Lab/Kyushu University

Reporting in Research Ideas and Outcomes, a Kyushu University researcher has developed a new technique for scanning various plants and animals and reconstructing them into highly detailed 3D models. To date, over 1,400 models have been made available online for public use.

Open any textbook or nature magazine and you will find stunning high-resolution pictures of the diverse flora and fauna that encompass our world. From the botanical illustrations in Dioscorides' De materia medica (50-70 CE) to Robert Hooke's sketches of the microscopic world in Micrographia (1665), scientists and artists alike have worked meticulously to draw the true majesty of nature.

The advent of photography has given us even more detailed images of animals and plants both big and small, in some cases providing new information on an organism's morphology. As technology developed, digital libraries began to grow, giving us near unfettered access to valuable data, with methods like computer tomography, or CT, and MRI scanning becoming powerful tools for studying the internal structure of such creatures.

"While powerful, MRI scanning and CT methods are prohibitively expensive. You also can't collect vital information such as the organism's color," explains Yuichi Kano, associate professor of Kyushu University's Graduate Education and Research Training Program in Decision Science for a Sustainable Society. "So, we developed 'bio-photogrammetry' as a way to incorporate photogrammetry that could scan and render a high-quality 3D image of an organism."

A sample organism, in this case a Long-spine Balloonfish (Diodon olocanthus), is processed (inflated), scanned, and rendered into a high-quality 3D model. Up to 500 photos go into rendering a single model. Kano demonstrates in the video how the process is done. Credit: Kano Lab/Kyushu University

Photogrammetry is a method by which you can obtain information and measurements about objects by analyzing photos or other imagery. Today it is commonly used to scan everything from landscapes to sculptures to make digital 3D models, similar to what you find on Google Earth.

Kano took that same methodology to make thousands of models of various organisms.

"We suspended the sample on a and took photos from multiple angles. We would end up taking hundreds of photos of the sample, and input up to 500 of the best ones into the photogrammetry program," explains Kano. "It is similar to how the 'bullet time' sequences were filmed in the first Matrix movie, except instead of Keanu Reeves on a line surrounded by cameras, we use an octopus."

While Kano has been working on various organisms including insects, plants, and even fungi, he is currently focusing on aquatic animals such as fish and amphibians. To date, there are over 1,400 specimens available all free to use under the CC BY 4.0 license.

A series of 3D models taken using Bio-photogrammetry. The process can be used to scan a variety of organisms including plants, amphibians, and insects. Credit: Kano Lab/Kyushu University

There are a few limitations in the current methodology, such as difficulty in capturing transparent creatures or making models of exceedingly small (<5 mm) or large (>1 m) organisms, but a few improvements in software and protocols could help solve such issues.

"I hope to see this work continue to grow and be utilized in various fields like taxonomy, morphology, and ecology. It's free to the public, so you can use it in education or even plug it into a VR machine and explore these organisms up-close. I'd like to see what some people can come up with," concludes Kano.

More information: Yuichi Kano, Bio-photogrammetry: digitally archiving coloured 3D morphology data of creatures and associated challenges, Research Ideas and Outcomes (2022). DOI: 10.3897/rio.8.e86985

Provided by Kyushu University

Citation: Creating fast, reliable 3D scans of flora and fauna (2022, October 25) retrieved 26 March 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers develop new ways of visualizing ancient small objects by combining technologies


Feedback to editors