As much pressure as Uranus' core: The first materials synthesis research and study in the terapascal range

As much pressure as Uranus' core: The first materials synthesis research and study in the terapascal range
Structures and properties of materials at extremely high pressures and temperatures are still largely "terra incognita." Prof. Leonid Dubrovinsky and his research partners use a laser-heated two-stage diamond anvil cell they constructed for the synthesis of materials in the terapascal range (1000 gigapascals). In situ single crystal X-ray diffraction is used for the simultaneous structural characterization of the materials. Credit: Timofey Fedotenko.

Jules Verne could not even dream of this: A research team from the University of Bayreuth, together with international partners, has pushed the boundaries of high-pressure and high-temperature research into cosmic dimensions. For the first time, they have succeeded in generating and simultaneously analyzing materials under compression pressures of more than one terapascal (1,000 gigapascals). Such extremely high pressures prevail, for example, at the center of the planet Uranus; they are more than three times higher than the pressure at the center of the Earth. In Nature, the researchers present the method they have developed for the synthesis and structural analysis of novel materials.

Theoretical models predict very unusual structures and properties of under extreme pressure-temperature conditions. But so far, these predictions could not be verified in experiments at compression pressures of more than 200 gigapascals. On the one hand, complex technical requirements are necessary to expose material samples to such extreme pressures, and on the other hand, sophisticated methods for simultaneous structural analyses were lacking. The experiments published in Nature therefore open up completely new dimensions for high-pressure crystallography: materials can now be created and studied in the laboratory that exist—if at all—only under extremely high pressures in the vastness of the universe.

"The method we have developed enables us for the first time to synthesize new material structures in the terapascal range and to analyze them in situ—that is: while the experiment is still running. In this way, we learn about previously unknown states, properties and structures of crystals and can significantly deepen our understanding of matter in general. Valuable insights can be gained for the exploration of terrestrial planets and the synthesis of functional materials used in ," explains Prof. Dr. Leonid Dubrovinsky of the Bavarian Geoinstitute (BGI) at the University of Bayreuth, the first author of the publication.

In their new study, the researchers show how they have generated and visualized in situ novel rhenium compounds using the now discovered method. The compounds in question are a novel rhenium nitride (Re₇N₃) and a rhenium-nitrogen alloy. These materials were synthesized under extreme pressures in a two-stage diamond anvil cell heated by laser beams. Synchrotron single-crystal X-ray diffraction enabled full chemical and structural characterization.

"Two and a half years ago, we were very surprised in Bayreuth when we were able to produce a superhard metallic conductor based on rhenium and nitrogen that could withstand even extremely high pressures. If we apply high- crystallography in the terapascal range in the future, we may make further surprising discoveries in this direction. The doors are now wide open for creative materials research that generates and visualizes unexpected structures under extreme pressures," says the study's lead author, Prof. Dr. Natalia Dubrovinskaia from the Laboratory of Crystallography at the University of Bayreuth.


Explore further

Extremely hard yet metallically conductive: Researchers develop novel material with high-tech prospects

More information: Leonid Dubrovinsky, Materials synthesis at terapascal static pressures, Nature (2022). DOI: 10.1038/s41586-022-04550-2
Journal information: Nature

Citation: As much pressure as Uranus' core: The first materials synthesis research and study in the terapascal range (2022, May 11) retrieved 20 May 2022 from https://phys.org/news/2022-05-pressure-uranus-core-materials-synthesis.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
1553 shares

Feedback to editors