Wind mystery inside gas giant Saturn begins to unravel

Wind mystery inside gas giant Saturn begins to unravel
With this view, Cassini captured one of its last looks at Saturn and its main rings from a distance. Credit: NASA/JPL-Caltech/Space Science Institute

A new study argues that Saturn's interior flows like honey due to its magnetic field, which may help solve the mystery of why the planet's powerful winds stop 8,500km inside the giant gas planet.

Unlike Earth, Saturn has no solid surface; it is a gaseous planet, consisting mostly of hydrogen and helium that move around fluidly.

Strong winds, known as , form the appearance of stripes on Saturn's exterior—similar but less stark than those on Jupiter.

Study co-author, Dr. Navid Constantinou from The Australian National University (ANU), said the recent space mission Cassini offered a glimpse of what goes on below Saturn's cloud tops.

"At the end of its mission, Cassini dived into Saturn and made detailed measurements of Saturn's gravitational field," he said.

"The measurements revealed that these jet streams continue about 8,500 km inside Saturn, which is roughly 15 percent of the distance towards the planet's centre."

Dr. Constantinou said the study may help solve the mystery of why Saturn's jet streams stop at a certain depth.

"Deep into Saturn, where the pressure is high, the gas becomes a liquid that conducts electricity and is more strongly influenced by the planet's ," he said.

"An electrically conducting, flowing liquid will bend or distort a magnetic field. We showed that the distortion of the magnetic field makes the fluid more viscous, like honey."

The team's theoretical model indicates this viscous effect from the magnetic field could be the reason why the jet streams terminate at depths beyond 8,500 km.

"The mysteries of what goes on inside Saturn and the other gas giants in our Solar System are now slowly starting to be unveiled," Dr. Constantinou said.

"Our findings provide a promising way for interpreting the data from planetary missions and offer a better understanding of the planets in our Solar System and beyond."

Dr. Constantinou from the ANU Research School of Earth Sciences and Dr. Jeffrey Parker from Lawrence Livermore National Laboratory in the United States conducted the study.

The results are published in the Physical Review Fluids journal.

Explore further

Jupiter shows its true stripes

More information: Jeffrey B. Parker and Navid C. Constantinou, Magnetic eddy viscosity  of mean shear flows in two-dimensional magnetohydrodynamics, Phys. Rev. Fluids, 4, 083701 (2019). DOI: 10.1103/PhysRevFluids.4.083701
Citation: Wind mystery inside gas giant Saturn begins to unravel (2019, August 28) retrieved 17 October 2019 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more