ALMA observes the formation sites of solar-system-like planets

March 14, 2019, National Institutes of Natural Sciences
You can see two concentric rings where planets may be forming. Credit: ALMA (ESO/NAOJ/NRAO), Kudo et al.

Researchers have spotted the formation sites of planets around a young star resembling the sun. Two rings of dust around the star, at distances comparable to the asteroid belt and the orbit of Neptune in the solar system, suggest that we are witnessing the formation of a planetary system similar to our own.

The is thought to have formed from a cloud of cosmic gas and dust 4.6 billion years ago. By studying young planetary systems forming around other , astronomers hope to learn more about our own origins.

Tomoyuki Kudo, an astronomer at the National Astronomical Observatory of Japan (NAOJ), and his team observed the young star DM Tau using the Atacama Large Millimeter/submillimeter Array (ALMA). Located 470 light-years away in the constellation Taurus, DM Tau is about half the mass of the sun and estimated to be three to five million years old.

"Previous observations inferred two different models for the disk around DM Tau," said Kudo. "Some studies suggested the radius of the ring is about where the solar system's would be. Other observations put the size out where Neptune would be. Our ALMA observations provided a clear answer: both are right. DM Tau has two rings, one at each location."

The researchers found a bright patch in the outer ring. This indicates a local concentration of dust, which would be a possible formation site for a planet like Uranus or Neptune.

"We are also interested in seeing the details in the inner region of the disk, because the Earth formed in such an area around the young sun," commented Jun Hashimoto, a researcher at the Astrobiology Center, Japan. "The distribution of in the inner around DM Tau will provide crucial information to understand the origin of planets like Earth."

Artist's impression of the disk around a young star DM Tau. Credit: NAOJ

These results were published as Kudo et al. "A Spatially Resolved au-scale Inner Disk around DM Tau" in the Astrophysical Journal in November 2018 and presented at the annual meeting of the Astronomical Society of Japan in March 2019.

Explore further: Retreating snow line reveals organic molecules around young star

More information: Tomoyuki Kudo et al, A Spatially Resolved au-scale Inner Disk around DM Tau, The Astrophysical Journal (2018). DOI: 10.3847/2041-8213/aaeb1c

Related Stories

ALMA spots possible formation site of icy giant planet

September 14, 2016

Astronomers found signs of a growing planet around TW Hydra, a nearby young star, using the Atacama Large Millimeter/submillimeter Array (ALMA). Based on the distance from the central star and the distribution of tiny dust ...

Double dust ring test could spot migrating planets

October 17, 2018

New research by a team led by an astrophysicist at the University of Warwick has a way of finally telling whether newly forming planets are migrating within the disc of dust and gas that typically surrounds stars or whether ...

Little star sheds light on young planets

September 4, 2018

Astronomers from the Department of Physics at the University of Tokyo discovered a dense disk of material around a young star, which may be a precursor to a planetary system. Their research could vastly improve models of ...

Recommended for you

A decade on, smartphone-like software finally heads to space

March 20, 2019

Once a traditional satellite is launched into space, its physical hardware and computer software stay mostly immutable for the rest of its existence as it orbits the Earth, even as the technology it serves on the ground continues ...

Tiny 'water bears' can teach us about survival

March 20, 2019

Earth's ultimate survivors can weather extreme heat, cold, radiation and even the vacuum of space. Now the U.S. military hopes these tiny critters called tardigrades can teach us about true toughness.

Researchers find hidden proteins in bacteria

March 20, 2019

Scientists at the University of Illinois at Chicago have developed a way to identify the beginning of every gene—known as a translation start site or a start codon—in bacterial cell DNA with a single experiment and, through ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.