Thermal testing of Solar Orbiter

January 31, 2019, European Space Agency
Credit: Airbus Defence and Space

A side view of ESA's Solar Orbiter as it entered a vacuum chamber for thermal vacuum testing at the IABG test facility in Ottobrunn, Germany, last month.

The flight model had been readied by prime contractor Airbus in the UK. Due to launch in 2020, Solar Orbiter will observe the Sun and measure the from a minimum of 42 million km away, or less than one-third Earth's distance. As a result, the spacecraft will be subjected to around 13 times the amount of solar heating that Earth-orbiting satellites experience, and to temperatures in excess of 500°C.

Solar Orbiter's main body will be protected from by a Sun-facing multi-layer titanium heat shield. The 1.1-m diameter high-gain antenna seen here will be deployed from the body of the spacecraft to, transmit science data back to Earth in high-bandwidth X-band.

The antenna's black colour is unusual. It is covered with the same kind of protective, high temperature coating as the front of Solar Orbiter's heatshield, based on burnt-bone charcoal. Developed by Irish company ENBIO, this 'Solar Black' coating was selected because it can maintain the same colour and surface properties despite years of exposure to unfiltered sunlight and ultraviolet radiation.

The high-gain antenna is placed at the end of a manoeuvrable 1-m long boom allowing Solar Orbiter to maintain a reliable, high-bandwidth link with Earth throughout its science-gathering phase.

This test campaign – using powerful lamps to simulate the Sun's radiation – began by simulating the conditions the spacecraft will undergo as it manoeuvres to its operational orbit through flybys of Earth and Venus.

"During 99 percent of the mission operations time, the heatshield will protect Solar Orbiter, but there will be more than a dozen manoeuvres when one of the side panels will be exposed to sunlight," explained Claudio Damasio, ESA's Solar Orbiter project thermal engineer. "Therefore, we need to know how the Proto Flight Model responds when the exterior of the insulation on these panels reaches a temperature of about 120–150 degrees Celsius."

For practical reasons, some elements, such as the and the instrument boom, were not integrated with the spacecraft during the test. They were integrated this month on the spacecraft, which will next undergo a series of mechanical and electromagnetic compatibility tests.

Explore further: BepiColombo monitoring camera test image

Related Stories

BepiColombo monitoring camera test image

October 15, 2018

An unusual view of part of the BepiColombo spacecraft stack, taken by one of the monitoring cameras (or 'selfie-cams') fixed to the Mercury Transfer Module, MTM. The camera is looking up towards the solar array drive (top ...

Image: The sunshield for ESA's Solar Orbiter

May 8, 2014

(Phys.org) —Members of ESA's Solar Orbiter team watch expectantly as an essential part of the spacecraft is lowered into Europe's largest vacuum chamber: the multi-layered shield that will protect their probe from the Sun's ...

InSight is catching rays on Mars

November 27, 2018

NASA's InSight has sent signals to Earth indicating that its solar panels are open and collecting sunlight on the Martian surface. NASA's Mars Odyssey orbiter relayed the signals, which were received on Earth at about 5:30 ...

Recommended for you

Light-based production of drug-discovery molecules

February 18, 2019

Photoelectrochemical (PEC) cells are widely studied for the conversion of solar energy into chemical fuels. They use photocathodes and photoanodes to "split" water into hydrogen and oxygen respectively. PEC cells can work ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.