Supernova SN 2018byg triggered by a helium-shell double detonation, study finds

January 14, 2019 by Tomasz Nowakowski, Phys.org report
Detection field and host galaxy of ZTF 18aaqeasu. The top panel is an archival SDSS image of the region while the lower panel shows an image taken with WASP on P200. The location of the transient is marked with the white circle - it is at a projected offset of ≈ 17.2'' corresponding to a physical projected distance of 21.9 kpc at the host galaxy redshift. Credit: De et al., 2019.

Astronomers have recently conducted photometric and spectroscopic observations of SN 2018byg, a peculiar Type Ia supernova. Results of these observations, presented in a paper published January 3 on the arXiv pre-print server, suggest that this cosmic explosion was caused by double detonation of a massive helium shell.

Supernovae (SNe) are energetic stellar explosions basically classified as Type I and Type II, depending on their light curves and nature of their spectra. Type I SNe are divided into three subclasses: Ia, Ib and Ic. Type Ia SNe are believed to be the result of the of a carbon-oxygen white dwarf in a binary as it goes over the so-called Chandrasehkar limit (1.4 solar masses), either due to accretion from a donor or mergers.

First spotted on May 4, 2018, SN 2018byg (also known as ZTF 18aaqeasu or ATLAS 18pqq) is one of many interesting Type Ia SNe. A team of astronomers led by Kishalay De of California Institute of Technology (Caltech) has carried out an observational campaign of this supernova using various ground-based telescopes and spacecraft. These observations provided important insights on the origin of this stellar explosion.

"In this paper, we present observations of ZTF 18aaqeasu, a peculiar Type I SN that exhibits remarkable similarities to expected signatures of a He-shell double detonation on a white dwarf," the researchers wrote in the paper.

As noted in the study, De and colleagues assume that in the case of SN 2018byg, the explosion was most likely triggered by a detonation of a helium-shell on a white dwarf. In particular, observations show that the outer layers of the ejecta are unusually rich in iron (Fe) group elements. This, according to the astronomers, could indicate a decay of radioactive elements in the outermost ejecta for an explosion powered by a helium-shell detonation.

Furthermore, the study found that photometric and nucleosynthetic properties of SN 2018byg are several similarities to sub-luminous Type Ia SNe. However, its peak photospheric spectra have extremely strong line blanketing features and red colors, what is unusual for Type Ia SNe.

In order to explain these properties of SN 2018byg, the researchers compared the data to various models. They found that the most plausible hypothesis explaining SN 2018byg's peculiarity is the detonation of a massive (around 0.15 solar masses) helium-shell on a white dwarf with a mass of about 0.75 .

"We show that the peculiar properties of ZTF 18aaqeasu are consistent with the of a massive (≈ 0.15 M) helium shell on a sub-Chandrasekhar mass (≈ 0.75 M) white dwarf after including mixing of ≈ 0.2 M of material in the outer ejecta," the authors of the paper concluded.

The researchers added that the properties and origin of SN 2018byg make this supernova one of its kind. Their study suggests that helium-shell double detonations must be intrinsically rare in the population of thermonuclear supernovae.

Explore further: Simulations uncover why some supernova explosions produce so much manganese and nickel

More information: Kishalay De et al. ZTF 18aaqeasu (SN 2018byg): A Massive Helium-shell Double Detonation on a Sub-Chandrasekhar Mass White Dwarf. arXiv:1901.00874 [astro-ph.HE]. arxiv.org/abs/1901.00874

Related Stories

Surface helium detonation spells end for white dwarf

October 4, 2017

An international team of researchers has found evidence that the brightest stellar explosions in our Universe could be triggered by helium nuclear detonation near the surface of a white dwarf star. Using Hyper Suprime-Cam ...

First evidence of gigantic remains from star explosions

January 9, 2019

Astrophysicists have found the first ever evidence of gigantic remains being formed from repeated explosions on the surface of a dead star in the Andromeda Galaxy, 2.5 million light years from Earth. The remains or "super-remnant" ...

Astronomers discover new kind of supernova

March 26, 2013

(Phys.org) —Supernovae were always thought to occur in two main varieties. But a team of astronomers including Carnegie's Wendy Freedman, Mark Phillips and Eric Persson is reporting the discovery of a new type of supernova ...

Recommended for you

A decade on, smartphone-like software finally heads to space

March 20, 2019

Once a traditional satellite is launched into space, its physical hardware and computer software stay mostly immutable for the rest of its existence as it orbits the Earth, even as the technology it serves on the ground continues ...

Tiny 'water bears' can teach us about survival

March 20, 2019

Earth's ultimate survivors can weather extreme heat, cold, radiation and even the vacuum of space. Now the U.S. military hopes these tiny critters called tardigrades can teach us about true toughness.

Researchers find hidden proteins in bacteria

March 20, 2019

Scientists at the University of Illinois at Chicago have developed a way to identify the beginning of every gene—known as a translation start site or a start codon—in bacterial cell DNA with a single experiment and, through ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.