Tiny bubbles of bacterial mischief

December 21, 2018 by Jenny Huang, Duke University
Basic anatomy of a vesicle, a bubble-like  membrane-bound package used by cells to move things around. Credit: Duke Research Blog

Margarethe (Meta) Kuehn studies vesicles—little bubbles that bud off bacterial membranes. All sorts of things may be tightly packed into these bubbles: viruses, antigens, and information a bacterium will need to make cells vulnerable to infection.

But why do produce these small membrane vesicles in the first place? Why not spread out to nearby cells themselves?

"The short answer is that we don't know yet," explains Kuehn, an associate professor of biochemistry at Duke. "But we speculate that it is due to their small size. These vesicles, which serve as delivery 'bombs,' can pass through pores that are too small for bacteria to fit through."

Originally a chemistry major, Kuehn always had an interest in biochemistry. As an undergraduate, she worked in and then in the infectious disease division of a children's hospital. There, she learned about and how they secrete proteins to give themselves access to host cells.

Kuehn's lab studies the mysterious world of bacterial production,focusing on the genetic, biochemical, and functional features of vesicles. So far, they have identified specific proteins and genes involved in the vesiculation process.

With a fine filter, they showed that vesicles can fit through holes to reach mammalian cells where a cannot.

Kuehn wonders why the bacteria don't just use soluble proteins, which are even smaller than vesicles. They must have some reason for preferring the cell's vesicles. Currently, they believe that vesicles can serve as nice packages—a whole bolus of information delivered together.

Not only will this new insight into extracellular vesicles of gram-negative bacteria aid in identifying , vesicles are also being used for vaccine delivery.

"They are really good antigen vehicles," reveals Kuehn, "The more we know how they are made, the better we can design effective vaccines for humans."

According to Kuehn, the amazing part about studying these pathogens is that, "You are never done. You never know it all. Every single pathogen, they each do things differently." What keeps Kuehn going, she explains, is that the search never ends.

"There is never really a defined end point; you have to come to grips with the fact that you will never know that whole answer."

Explore further: Extracellular vesicles help pass information between cells and onto offspring

Related Stories

Studying cellular deliveries

October 29, 2018

Many cells, including cancer cells, are known to secrete short RNAs in tiny vesicles, which then move inside other cells—potentially a form of cell-to-cell communication.

Recommended for you

'Zebra' tribal bodypaint cuts fly bites 10-fold: study

January 16, 2019

Traditional white-striped bodypainting practiced by indigenous communities mimics zebra stripes to reduce the number of potentially harmful horsefly bites a person receives by up to 10-fold, according to new research published ...

Big genome found in tiny forest defoliator

January 15, 2019

The European gypsy moth (EGM) is perhaps the country's most famous invasive insect—a nonnative species accidentally introduced to North America in the 1860s when a few escaped from a breeding experiment in suburban Boston. ...

Why haven't cancer cells undergone genetic meltdowns?

January 15, 2019

Cancer first develops as a single cell going rogue, with mutations that trigger aggressive growth at all costs to the health of the organism. But if cancer cells were accumulating harmful mutations faster than they could ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.