Scientists achieve first ever acceleration of electrons in plasma waves

October 15, 2018, Ulsan National Institute of Science and Technology
SeongYeol Kim in the Ph.D. program in Physics at UNIST. He is currently involved in the AWAKE collaboration at CERN. Credit: Moses Chung

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) near Geneva, Switzerland is said to be the largest particle accelerator in the world. The accelerator occupies a tunnel 27 kilometers in circumference as deep as 175 meters beneath the French-Swiss border. The facility has helped scientists uncover the Higgs boson, the last particle predicted by the Standard Model, in 2012.

Following the discovery of Higgs, a primary scientific goal of high-energy physicists has been to characterize its properties and to discover oher high-energy physics phenomena. As a result, there have been rapid developments in accelerator technologies to support high-energy physics research. However, the technologies used to date can only be improved and expanded at great expense. For this reason, making high-energy accelerators more affordable is urgently needed.

An international team of physicists, working on the Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN, reported that they have conducted a groundbreaking experiment demonstrating a new way of accelerating electrons to high energies—one that could dramatically shrink the size of future particle accelerators and lower their costs. A paper describing this important result was published in Nature on August 29, 2018.

AWAKE is an international scientific collaboration made up of engineers and scientists from 18 institutes, including CERN and the Max Planck Institute for Physics in Germany. A UNIST-based research group, led by Professor Moses Chung in the Department of Physics is also part of this AWAKE collaboration and made a number of important contributions to AWAKE. This includes the design of beamlines and the optimization of electron beam injection.

"AWAKE's technology will bring about a paradigm shift in the development of future high-energy particle accelerators, following LHC," says Professor Chung. "The latest achievement could enable engineers to drastically reduce the size of future particle accelerators, cutting down on the vast amounts of money normally required to build them." He adds, "The high-energy particle collisions these facilities produce enable physicists to probe the fundamental laws of nature, providing the basis for advancements in a huge variety of different fields."

Typically, particle physics experiments use oscillating electric fields, called radiofrequency cavities, and high-powered magnets to accelerate to high energies. But these experiments must grow quite large—they have to be, in order to accelerate particles with enough energy to properly study them.

As an alternative cost-cutting option to accelerate particles more efficiently, the wakefield has been suggested. Physicists send a beam of either electrons, protons, or a laser through a plasma. Free electrons in the plasma move toward the beam, but overshoot it, then come crashing back, creating a bubble structure behind the beam and intense electric fields. If you inject particles, like more electrons, into the wake, it can accelerate the injected particles in a shorter amount of time with an electric field 10 or more times stronger.

In the study, proton-driven has been demonstrated for the first time. The strong electric fields, generated by a series of proton microbunches, were sampled with a bunch of electrons. These electrons were accelerated up to 2 GeV in approximately 10 m of plasma and measured using a magnetic spectrometer. This technique has the potential to accelerate electrons to the TeV scale in a single accelerating stage.

Although still in the early stages of its programme, the AWAKE collaboration has taken an important step on the way to realising new high energy .

Explore further: Researchers achieve first ever acceleration of electrons in a proton-driven plasma wave

More information: E. Adli, et al., "Acceleration of electrons in the plasma wakefield of a proton bunch," Nature, (2018).

Related Stories

Making waves in accelerator technology

December 14, 2016

The AWAKE collaboration has reached a major milestone; in the final week of CERN's accelerator operations for 2016, it has observed strong modulation of high-energy proton bunches in plasma, signaling the generation of very ...

Recommended for you

New insights into magnetic quantum effects in solids

January 23, 2019

Using a new computational method, an international collaboration has succeeded for the first time in systematically investigating magnetic quantum effects in the well-known 3-D pyrochlore Heisenberg model. The surprising ...

Rapid and continuous 3-D printing with light

January 22, 2019

Three-dimensional (3-D) printing, also known as additive manufacturing (AM), can transform a material layer by layer to build an object of interest. 3-D printing is not a new concept, since stereolithography printers have ...

Scientists discover new quantum spin liquid

January 22, 2019

An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 15, 2018
Sorry, but are article this deceptive?
"Scientists achieve first ever acceleration of electrons in plasma waves"
Only halfway through this articles do you hint that plasma acceleration of electrons (ie. wakefield acceleration) have been done before.

Please be a little more honest in your articles in the future.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.